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Preface

This introduction to Godel's incompleteness theorems is written
for the general mathematician, philosopher, computer scientist and
any other curious reader who has at least a nodding acquaintance
with the symbolism of first-order logic (the logical connectives and
quantifiers) and who can recognize the logical validity of a few ele-
mentary formulas. A standard one-semester course in mathematical
logic is more than enough for the understanding of this volume.

The proofs we give are unusually simple. The simplest proof of
all (and we are now addressing the expert rather than the beginning
reader) is obviously the one using Tarski's truth set and is the one
we give first. It is so very simple compared to the standard ones that
we are surprised that it is not generally better known. [Something of
the sort can be found in Mostowski [1952], though the last chapter
of Quine [1940] comes closer to what we have in mind.]

In our opening chapter we begin with a simple illustration of
Godel's essential idea (using a simple machine language) and then
go on to consider some purely abstract incompleteness theorems sug-
gested by the introduction to Godel's original paper. We show how
any mathematical system having certain very general features is sub-
ject to Godel's argument. In subsequent chapters we consider some
specific mathematical systems and show that they do possess these
general features.

In Chapter 2 we prove Tarski's theorem for arithmetic based on
plus, times and power. In the next chapter we give our first proof of
Godel's incompleteness theorem for axiomatic arithmetic based on
plus, times and power and in Chapter 4 we prove the incomplete-
ness of the better known system of Peano Arithmetic based on plus
and times alone. Both proofs use Tarski's truth set, which, as we
have remarked, accounts largely for their simplicity. [Briefly, prov-
ability is arithmetic; truth is not, hence the two do not coincide.]
Another simplifying factor is that we use the Montague-Kalish ax-
iomatization of first-order logic, thus circumventing the necessity of
arithmetizing substitution. [In a later chapter we indicate in a series
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of exercises how the proofs can be modified for the more standard
type of axiomatization.]

We then turn to the better known incompleteness proofs which
do not use the notion of truth—Godel's original proof based on w-
consistency (Ch. 5) and Rosser's proof based on simple consistency
(Ch. 6). In establishing these results, we do not employ the usual
apparatus of recursive functions; instead, we use the constructive
arithmetic relations introduced in T.F.S. (Theory of Formal Sys-
tems). It is particularly easy to show these relations to be definable
in the formal theories under consideration and so our proofs of the
Godel theorem and the Godel-Rosser theorem are accordingly sim-
plified. Another simplifying factor is that instead of working with
the characteristic functions of the key metamathematical relations
(which is the usual procedure) we work with the relations them-
selves and show directly their rep resent ability in the theories under
discussion.

By the end of Chapter 6, the reader will have seen three different
proofs of the incompleteness of Peano Arithmetic. Each is of interest
and reveals certain facts not revealed by either of the others. The
three proofs generalize in different directions which we carefully point
out and compare. For sheer directness and simplicity, the Godel-
Tarski proof is the best. For applications to Godel's second theorem,
Godel's original proof is the one that is needed. Out of Rosser's proof
has come Kleene's symmetric form of Godel's theorem and the whole
subject of recursive and effective inseparability—a topic we study in
great detail in our sequel to this volume.

Chapter 7 is devoted to the remarkable representation and sepa-
ration theorems of John Shepherdson [1961]. These results are not
necessary for the remaining chapters of this volume, but they are ex-
tremely fascinating in their own right (and play a major role in our
sequel). There is a good deal in this chapter that should interest the
expert as well as the general reader (for example, a strengthening
of Shepherdson's theorem that has somewhat the flavor of recursion
theorems, and also some curious variants of Rosser's undecidable
sentence).

Chapter 8 contains some basic technical material and a proof of a
fixed point principle necessary for the study of Godel's second incom-
pleteness theorem and Lob's theorem, which we discuss in Chapter 9.
Chapter 10 contains some general observations about provability and
truth and the statement of an interesting result of Askanas [1975].
Our closing chapter (a bit of dessert) combines some of the author's
typical logic puzzles with a review and generalization of several re-
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suits of earlier chapters and shows how they tie up with recent de-
velopments in modal logic of the sort so skillfully treated in Boolos
[1979] (and in a semi-formal way, in Smullyan [1987]).

Although this volume was written primarily as an introduction to
incompleteness theorems, it was also intended as a preparation for
our sequel, "Recursion Theory for Metamathematics", in which we
explore in depth the fascinating interrelations between incomplete-
ness and recursive unsolvability.

I wish to express my thanks to Dana Scott, Anil Gupta, Perry
Smith and my students Peter Harlan, Suresh Srivinas and Venkatesh
Choppella for having made many extremely helpful suggestions.
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Chapter I

The General Idea Behind Godel's Proof

In the next several chapters we will be studying incompleteness
proofs for various axiomatizations of arithmetic. Godel, 1931, car-
ried out his original proof for axiomatic set theory, but the method
is equally applicable to axiomatic number theory. The incomplete-
ness of axiomatic number theory is actually a stronger result since
it easily yields the incompleteness of axiomatic set theory.

Godel begins his memorable paper with the following startling
words.

"The development of mathematics in the direction of greater pre-
cision has led to large areas of it being formalized, so that proofs can
be carried out according to a few mechanical rules. The most com-
prehensive formal systems to date are, on the one hand, the Principia
Mathematica of Whitehead and Russell and, on the other hand, the
Zermelo-Fraenkel system of axiomatic set theory. Both systems are
so extensive that all methods of proof used in mathematics today
can be formalized in them—i.e. can be reduced to a few axioms and
rules of inference. It would seem reasonable, therefore, to surmise
that these axioms and rules of inference are sufficient to decide all
mathematical questions which can be formulated in the system con-
cerned. In what follows it will be shown that this is not the case, but
rather that, in both of the cited systems, there exist relatively simple
problems of the theory of ordinary whole numbers which cannot be
decided on the basis of the axioms."

Godel then goes on to explain that the situation does not depend
on the special nature of the two systems under consideration but
holds for an extensive class of mathematical systems.

Just what is this "extensive class" of mathematical systems? Var-
ious interpretations of this phrase have been given, and Godel's the-

1



2 Chapter I. The General Idea Behind Godel's Proof

orem has accordingly been generalized in several ways. We will con-
sider many such generalizations in the course of this volume. Curi-
ously enough, one of the generalizations that is most direct and most
easily accessible to the general reader is also the one that appears
to be the least well known. What makes this particularly curious is
that the way in question is the very one indicated by Godel himself in
the introductory section of his original paper! We shall shortly turn
to this (or rather to a further generalization of it), but before that,
we would like the reader to look at the following little puzzles which
illustrate Godel's essential idea in a simple and instructive way.

A Godelian Puzzle. Let us consider a computing machine that
prints out various expressions composed of the following five symbols:

By an expression, we mean any finite non-empty string of these
five symbols. An expression X is called printable if the machine can
print it. We assume the machine programmed so that any expression
that the machine can print will be printed sooner or later.

By the norm of an expression X, we shall mean the expression
X(X) — e.g. the norm of P~ is P~(P~). By a sentence, we mean any
expression of one of the following four forms (X is any expression):

(1) P(X)
(2) PN(X)
(3) ~ P(X)
(4) ~ PN(X)

Informally, P stands for "printable"; N stands for "the norm of"
and ~ stands for "not". And so we define P(X) to be true if (and
only if) X is printable. We define PN(X) to be true if the norm
of X is printable. We call ~ P(X) true iff (if and only if) X is not
printable, and ~ PN(X) is defined to be true iff the norm of X is not
printable. [This last sentence we read as "Not printable the norm of
.X"", or, in better English: "The norm of X is not printable".]

We have now given a perfectly precise definition of what it means
for a sentence to be true, and we have here an interesting case of
self-reference: The machine is printing out various sentences about
what the machine can and cannot print, and so it is describing its
own behavior! [It somewhat resembles a self-conscious organism, and
we can see why such computers are of interest to those working in
artificial intelligence.]

We are given that the machine is completely accurate in that all
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sentences printed by the machine are true. And so, for example, if
the machine ever prints P(X), then X really is printable (X will be
printed by the machine sooner or later). Also, if PN(X) is printable,
so is X ( X ) (the norm of X). Now, suppose X is printable. Does
it follow that P(X) is printable? Not necessarily. If X is printable,
then P(X] is certainly true, but we are not given that the machine is
capable of printing all true sentences but only that the machine never
prints any false ones. [Whether the machine can print expressions
that are not sentences at all is immaterial. The important thing is
that among the sentences printable by the machine, all of them are
true.]

Is it possible that the machine can print all true sentences? The
answer is no and the problem for the reader is this: Find a true
sentence that the machine cannot print. [Hint: Find a sentence that
asserts its own non-printability—i.e. one which is true if and only if
it is not printable by the machine. The solution is given after the
next problem.]

A Variant of the Puzzle. The following variant of the above puz-
zle will introduce the reader to the notion of Godel numbering.

We now have another machine that prints out expressions com-
posed of the following five symbols:

We are representing the natural numbers in binary notation (as
strings of 1's and O's), and for purposes of this problem, we will
identify the natural numbers with the binary numerals that represent
them.

To each expression we assign a number which we call the Godel
number of the expression. We do this according to the following
scheme: The individual symbols ~, P, N, 1,0 are assigned the respec-
tive Godel numbers 10,100,1000,10000,100000. Then, the Godel
number of a compound expression is obtained by replacing each
symbol by its Godel number—for example, PNP has Godel number
1001000100. We redefine the norm of an expression to be the expres-
sion followed by its Godel number—for example, the norm of PNP
is the expression P7VP1001000100. A sentence is now an expression
of one of the four forms: PX, PNX, ~ PX and ~ PNX, where X
is any number (written in binary notation). We call PX true if X
is the Godel number of a printable expression. We call PNX true
iff X is the Godel number of an expression whose norm is printable.
We call ~ PX true if PX is not true (X is not the Godel number



4 Chapter I. The General Idea Behind GodePs Proof

of a printable expression), and we call ~ PNX true iff PNX is not
true.

Again we are given that the machine never prints a false sentence.
Find a true sentence that the machine cannot print.

Solutions. For the first problem, the sentence is ~ PN(~ PN).
By definition of "true", this sentence is true if and only if the norm
of ~ PN is not printable. But the norm of ~ PN is the very
sentence ~ PJV(~ PN)\ And so the sentence is true if and only if
it is not printable. This means that either the sentence is true and
not printable, or it is printable and not true. The latter alternative
violates the given hypothesis that the machine never prints sentences
that are not true. Hence the sentence must be true, but the machine
cannot print it.

Of course, instead of having talked about a machine that prints
various expressions in our five symbols, we could have talked about a
mathematical system that proves various sentences in the same five
symbols. We would then reinterpret the letter P to mean provable
in the system, rather than printable by the machine. Then, given
that the system is wholly accurate (in that, false sentences are never
provable in it), the sentence ~ PJV(~ PN) would be a sentence that
is true but not provable in the system.

Let us further observe that the sentence PJV(~ PN) is false (since
its negation is true). Hence it is also not provable in the system
(assuming that the system is accurate). And so the sentence

is an example of a sentence undecidable in a system—i.e. neither it
nor its negation is provable in the system.

For the second problem, the solution is ~ P./V101001000.

Now we shall turn to some incompleteness arguments in a general
setting: We consider a very broad notion of a mathematical system
and show that if it has certain features, then Godel's argument goes
through. In the chapters that follow, we will look at some particular
systems and show that they do indeed possess these features.
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/. Abstract Forms of Godel's and Tarski's
Theorems

Each of the languages £ to which Godel's argument is applicable
contains at least the following items.

1. A denumerable set £ whose elements are called the expressions
of£.

2. A subset S of £ whose elements are called the sentences of £.
3. A subset T of S whose elements are called the provable sen-

tences of £.
4. A subset 'R, of S whose elements are called the refutable (some-

times disprovable) sentences of £.
5. A set 'H of expressions whose elements are called the predicates

of L. [These were called class names in Godel's introduction.
Informally, each predicate H is thought of as being the name
of a set of natural numbers.]

6. A function $ that assigns to every expression E and every nat-
ural number n an expression E(n). The function is required to
obey the condition that for every predicate H and every natu-
ral number n, the expression H(n) is a sentence. [Informally,
the sentence H (n) expresses the proposition that the number n
belongs to the set named by H.]

In the first incompleteness proof that we will give for a par-
ticular system £, we will use a basic concept made precise by
Alfred Tarski [1936]—viz. the notion of a true sentence (defined
quite differently than that of a provable sentence of a system).
And so we consider a seventh and final item of our language £.

7. A set T of sentences whose elements are called the true sen-
tences of £.

This concludes our abstract description of the type of systems that
we will study in the next several chapters.

Expressibility in L. The notion of expressibility in £, which we
are about to define, concerns the truth set T but does not concern
either of the sets P and 7£.

The word number shall mean natural number for the rest of this
volume. We will say that a predicate H is true for a number n or
that n satisfies H if H(n) is a true sentence (i.e. is an element of
T}. By the set expressed by H, we mean the set of all n that satisfy
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H. Thus for any set A of numbers, H expresses A if and only if for
every number n:

Definition. A set A is called expressible or nameable in £ if A is
expressed by some predicate of £.

Since there are only denumerably many expressions of £, then
there are only finitely or denumerably many predicates of £. But
by Cantor's well-known theorem, there are non-denumerably many
sets of natural numbers. Therefore, not every set of numbers is
expressible in C..

Definition. The system C is called correct if every provable sentence
is true and every refutable sentence is false (not true). This means
that "P is a subset of T and 72. is disjoint from T. We are now
interested in sufficient conditions that £, if correct, must contain a
true sentence not provable in £.

Godel Numbering and Diagonalization. We let g be a 1-1 func-
tion which assigns to each expression E a natural number g(E) called
the Godel number of E. The function g will be constant for the rest
of this chapter. [In the concrete systems to be studied in subsequent
chapters, a specific Godel numbering will be given. Our present
purely abstract treatment, however, applies to an arbitrary Godel
numbering.] It will be technically convenient to assume that ev-
ery number is the Godel number of an expression. [Godel's original
numbering did not have this property, but the Godel numbering we
will use in subsequent chapters will have this property. However,
the results of this chapter can, with minor modifications, be proved
without this restriction (cf. Ex. 5).] Assuming now that every num-
ber n is the Godel number of a unique expression, we let En be that
expression whose Godel number is n. Thus, g(En) = n.

By the diagonalization of En we will mean the expression En(n).
If En is a predicate, then its diagonalization is, of course, a sentence;
this sentence is true iff the predicate En is satisfied by its own Godel
number n. [We write "iff" to mean if and only if; we use "<->•"
synonymously.]

For any n, we let d(n) be the Godel number of En(n). The func-
tion d(x) plays a key role in all that follows; we call it the diagonal
function of the system.

We use the term number-set to mean set of (natural) numbers.
For any number set A, by A* we shall mean the set of all numbers
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n such that d(n) G A. Thus for any n, the equivalence

holds by definition of A*. [A* could also be written d~l(A), since it
is the inverse image of A under the diagonal function d(x).]

An Abstract Form of Godel's Theorem. We let P be the set
of Godel numbers of all the provable sentences. For any number set
A, by its complement A, we mean the complement of A relative to
the set N of natural numbers—i.e. A is the set of all natural numbers
not in A.

Theorem (GT)—After Godel with shades of Tarski. If the set
P* is expressible in C, and C is correct, then there is a true sentence
of £ not provable in £,.

Proof. Suppose L is correct and P* is expressible in £,. Let H be a
predicate that expresses P* in £, and let h be the Godel number of
H. Let G be the diagonalization of H (i.e. the sentence H(h}). We
will show that G is true but not provable in C.

Since H expresses P* in £, then for any number n, H(n) is true <-»•
n € -P*. Since this equivalence holds for every n, then it holds in
particular for n the number h. So we take h for n (and this is the part
of the argument called diagonalizing) and we have the equivalence:
H (h) is true «-> h £ P*. Now,

But d(/i) is the Godel number of H(h) (since /i is the Godel number of
H) and so d(k) 6 P <-+ H(h] is provable in £ and d(/&) g P <-»• #(/i)
is not provable in £. And so we have

1. .ff(/fc) is true «-> #(/&) is not provable in £. This means that
H(h] is either true and not provable in £ or false but provable
in £. The latter alternative violates the hypothesis that £ is
correct. Hence it must be that H(h) is true but not provable
in £.

When it comes to the particular languages £ that we will study,
we will verify the hypothesis that P* is expressible in £ by separately
verifying the following three conditions.

G\: For any set A expressible in £, the set A* is expressible in £.
GI\ For any set A expressible in £, the set A is expressible in £.
<j?3: The set P is expressible in £.
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Conditions G\ and (?2, of course, imply that for any set A express-
ible in £, the set A* is expressible in £. Hence if P is expressible in
£, then so is P*.

We might remark that the verification of G\ will turn out to be
relatively simple; the verification of GI will be completely trivial;
but the verification of Gy, will turn out to be extremely elaborate.

Godel Sentences. Woven into the proof of Theorem GT is a very
important principle which was made explicit by Rudolf Carnap [1934]
and which is closely related to Tarski's theorem, to which we will
soon turn.

Call a sentence En a Godel sentence for a number set A if either
En is true and its Godel number n lies in A, or En is false and its
Godel number lies outside A. Thus, En is a Godel sentence for A iff
the following condition holds:

[Informally, a Godel sentence for A can be thought of as a sentence
asserting that its own Godel number lies in A. If the sentence is true,
then its Godel number does lie in A. If the sentence if false, then its
Godel number does not lie in A.]

The following lemma and theorem pertains only to the set T. The
sets P and *R, are irrelevant.

Lemma (D)—A Diagonal Lemma, (a) For any set A, if A* is
expressible in £, then there is a Godel sentence for A.

(b) If jC. satisfies condition GI, then for any set A expressible in
£, there is a Godel sentence for A.

Proof.

(a) Suppose H is a predicate that expresses A* in £; let h be its
Godel number. Then d(h) is the Godel number of H(h). For
any number n, H(ri) is true <-» n 6 A*, therefore, H(h) is
true <~> h € A*. And h € A* <-»• d(h) € A. Therefore, H(h) is
true <->• d(h) € A, and since d(h) is the Godel number of H(K),
then H(h) is a Godel sentence for A.

(b) Immediate from (a).

Let us note that if we had first proved Lemma D, we would have
had the following swift proof of Theorem GT: Since P* is nameable
in £, then by lemma D, there is a Godel sentence G for P. A Godel
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sentence for P is nothing more nor less than a sentence which is
true if and only if it is not provable (in £). And for any correct
system £, a Godel sentence for P is a sentence which is true but not
provable in £.. [Such a sentence can be thought of as asserting its
own non-provability in £.]

An Abstract Form of Tarski's Theorem. Lemma D has another
important consequence: Let T be the set of Godel numbers of the
true sentences of £. Then the following theorem holds.

Theorem (T) (After Tarski).

1. The set T* is not nameable in L.
2. // condition GI holds, then T is not nameable in C.
3. If conditions G\ and GI both hold, then the set T is not name-

able in C.

Proof. To begin with, there cannot possibly be a Godel sentence for
the set T because such a sentence would be true if and only if its
Godel number was not the Godel number of a true sentence, and
this is absurd.

1. If T* were nameable in £, then by (a) of Lemma D, there would
be a Godel sentence for the set T, which we have just shown is
impossible. Therefore, T* is not nameable in jC.

2. Suppose condition GI holds. Then if T were nameable in £,
the set T* would be nameable in £, violating (1).

3. If GI also holds, then if T were nameable in £, then T would
also be nameable in £, violating (2).

Remarks.

1. Conclusion (3) above is sometimes paraphrased: For systems
of sufficient strength, truth within the system is not definable
within the system. The phrase "sufficient strength" has been
interpreted in several ways. We would like to point out that
conditions G\ and GI suffice for this "sufficient strength."

2. Godel (1931) likens his proof to the famous paradox of the Cre-
tan who says that all Cretans are liars.1 An analogy that comes
closer to Godel's theorem is this: Imagine a land in which every
inhabitant either always tells the truth or always lies. Some of
the inhabitants are Athenians and some are Cretans. It is given

1 Actually, the liar paradox is more closely related to Tarski's theorem than to Godel's.
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that all the Athenians of the land always tell the truth and all
the Cretans of the land always lie. What statement could an
inhabitant make that would convince you that he always tells
the truth but that he is not an Athenian?

All he would need to say is: "I am not an Athenian." A liar
couldn't make that claim (because a liar is really not an Athe-
nian; only truth-tellers are Athenian). Therefore, he must be
truthful. Hence his statement was true, which means that he
is really not an Athenian. So he is a truth teller but not an
Athenian.

If we think of the Athenians as playing the role of the sentences
of £, which are not only true but provable in £, then any inhab-
itant who claims he is not Athenian plays the role of Godel's
sentence G, which asserts its own non-provability in £. [The
Cretans, of course, play the role of the refutable sentences of £,
but their function won't emerge till a bit later.]

//. Undecidable Sentences of C

So far, the set 13, of refutable sentences has played no role. Now it
shall play a key one.

£ is called consistent if no sentence is both provable and refutable
in £ (i.e. the sets P and 7£ are disjoint) and inconsistent otherwise.
The definition of consistency refers only to the sets P and 7£, not
to the set T. Nevertheless, if £ is correct, then it is automatically
consistent (because if P is a subset of T and T is disjoint from 7£,
then P must be disjoint from 72.). The converse is not necessarily
true (we will later consider some systems that are consistent but not
correct).

A sentence X is called decidable in £ if it is either provable or
refutable in £ and undecidable in £ otherwise. The system £ is
called complete if every sentence is decidable in £ and incomplete if
some sentence is undecidable in £.

Suppose now £ satisfies the hypothesis of Theorem GT. Then
some sentence G is true but not provable in £. Since G is true, it is
not refutable in £ either (by the assumption of correctness). Hence
G is undecidable in £. And so we at once have
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Theorem 1. If £ is correct and if the set P* is expressible in £,
then C, is incomplete.

A Dual of Theorem 1. In T.F.S. (Theory of Formal Systems,
1961) we introduced what might aptly be called a "dual form" of
Godel's argument, which we will first explain informally. Instead of
constructing a sentence that says "I am not provable," we will con-
struct a sentence that says "I am refutable." As we are about to see,
such a sentence must also be undecidable in £ (if C is correct).

We have defined P to be the set of Godel numbers of the provable
sentences. We now define R to be the set of Godel numbers of the
refutable sentences.

Theorem (1°)—(A Dual of Theorem 1). If £ is correct and the
set R* is expressible in £, then £ is incomplete. More specifically, if
£ is correct and K is a predicate that expresses the set R*, then its
diagonalization K(k) is undecidable in £ (k is the Godel number of
K).

Proof. Assume hypothesis. Since K expresses R*, then by the proof
of (a) of Lemma D, the sentence K(k) is a Godel sentence for the set
R. Thus, K(k) is true iff its Godel number is in R, or, what is the
same thing, K(k) is true iff K(k) is in 7£, so K(ty is true iff K(k)
is refutable in £. This means that K(k) is either true and refutable
or false but not refutable. By the assumption of correctness, K(k)
cannot be true and refutable. Hence it is false but not refutable.
Since the sentence is false, it is not provable either (again by the
assumption that £ is correct). Hence K(k~) is neither provable nor
refutable in £.

Remarks. Just as the Godel sentence H(h) can be thought of as
saying: "I am not provable in £," we can think of K(k} as saying:
"I am refutable in £." Going back to our analogy of Athenians
and Cretans, just as H(h) corresponds to an inhabitant who claims
that he is not an Athenian, the sentence K(k] corresponds to an
inhabitant who claims that he is a Cretan. He must be a liar but
not a Cretan. Hence (like an inhabitant who claims he is not an
Athenian) he must be neither an Athenian nor a Cretan.

Suppose now we have a correct system £ satisfying the following
two conditions:

G\: For any expressible set .A, the set A* is expressible
GZ': The set R is expressible
Then, of course, the set R* is expressible. So by Theorem 1°, £
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is inconsistent or incomplete. We note that the complementation
condition GI is not required in this proof.

The first exercise below contains an interesting variant of Theo-
rem 1°.

Exercise 1. Suppose £ is a correct system such that the following
two conditions hold.

1. The set P* is expressible in £.
2. For any predicate #, there is a predicate H' such that for every

n, the sentence H'(n) is provable in £ if and only if H(n) is
refutable in £.

Prove that £ is incomplete.

Exercise 2. We say that a predicate H represents a set A in £ if
for every number n, the sentence H (n) is provable in £ if and only
if n £ A. [Note that this definition makes no reference to the truth
set T but only to the provability set P.]

Show that if the set R* is representable in £, then £, if consistent,
is incomplete.

Exercise 3. Show that if some superset of R* disjoint from P* is
representable in £, then £ is incomplete. [We call B a superset of A
if A is a subset of .0.]

Exercise 4. Let us say that a predicate H contrarepresents a set
A in £ if for every number n, the sentence H(n) is refutable in £
iff n € A. Show that if the set P* is contrarepresentable in £ and
£ is consistent, then £ is incomplete. [This result and the result of
Exercise 2 will be expanded in Chapter 5; the result of Exercise 3
is related to Rosser's incompleteness proof, which we will study in
Chapter 6.]

Exercise 5. Suppose we have a Godel numbering g such that it is
not the case that every number is a Godel number. Then we define
a function d(x) to be a diagonal function (rather than the diagonal
function) if it has the property that for any number e, if e is the
Godel number of an expression E, then d(e) is the Godel number
of E(e). Prove that for any diagonal function d(x), if d~l(A) is
expressible in £, then there is a Godel sentence for A.

Exercise 6. Is it necessarily true that for any set A, the set A* is
the same as the set A*?

Exercise 7. To emphasize the wholly constructive nature of GodePs
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proof, suppose C, is a correct system such that the following three
conditions hold.

1. Ej is a predicate that expresses the set P.
2. For any number n, if En is a predicate, then so is JE?3n, and Ezn

expresses the complement of the set expressed by En.
3. For any number n, if En is a predicate, then Esn+i is a pred-

icate, and if A is the set expressed by En, then A* is the set
expressed by E^n+i.

(a) Find numbers a and b (either the same or different) such
that jE/0(6) is a true sentence not provable in C. [There are
two solutions in which a and 6 are both less than 100. Can
the reader find them both?]

(b) Show that there are infinitely many pairs (a, 6) such that
Ea(b) is true but not provable in C.

(c) Given that Ew is a predicate, find numbers c and d such
that Ec(d) is a Godel sentence for the set expressed by E\Q.



Chapter II

Tarski's Theorem for Arithmetic

In the last chapter, we dealt with mathematical languages in consid-
erable generality. We shall now turn to some particular mathemat-
ical languages. One of our goals is to reach Godel's incompleteness
theorem for the particular system known as Peano Arithmetic. We
shall give several proofs of this important result; the simplest one is
based partly on Tarski's theorem, to which we first turn.

/. The Language CE

§1. Syntactic Preliminaries. The first concrete language
that we will study is the language of first order arithmetic based
on addition, multiplication and exponentiation. [We also take as
primitive the successor function and the less than or equal to relation,
but these are inessential.] We shall formulate the language using
only a finite alphabet (mainly for purposes of a convenient Godel
numbering); specifically we use the following 13 symbols.

The expressions 0,0',0",0"', • • • are called numerals and will serve
as formal names of the respective natural numbers 0, 1, 2, 3, • • •.
The accent symbol (also called the prime} is serving as a name of
the successor function. We also need names for the operations of
addition, multiplication and exponentiation; we use the expressions
/',/",/'" as respective names of these three functions. We abbreviate
// by the familiar "+"; we abbreviate /// by the familiar dot and /»//
by the symbol "E".

The symbols ~ and D are the familiar symbols from prepositional

14
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logic, standing for negation and material implication, respectively.
[For any reader not familiar with the use of the horseshoe symbol,
for any propositions p and q, the propositions p 3 q is intended to
mean nothing more nor less than that either p is false, or p and q are
both true.] The symbol V is the universal quantifier and means "for
all." We will be quantifying only over natural numbers not over sets
or relations on the natural numbers. [Technically, we are working in
first-order arithmetic, not second-order arithmetic.]

The symbol "=" is used, as usual, to denote the identity relation,
and "<" is used, as usual, to denote the "less than or equal to"
relation.

We also need denumerably many expressions t>i, t>2,. . . ,vn , . . .
called (individual) variables. Well, we wish to stay within our 13-
symbol alphabet, and so we will take for Vi , t>2> u3> • • • the respective
expressions (v/),(v//) ,(v«/), . . . [Thus, vn is, by definition, the result
of enclosing 'V followed by n subscripts in parentheses.]

Terms and Formulas. An expression is called a term if its being
so is a consequence of the following two rules.

1. Every variable and numeral is a term.
2. If ti and f2 are terms, then so are (ti + £2)5 (^t • h)i(ti E ^2)

and t\'.

A term is said to be a closed term or a constant term if it contains
no variables.

By an atomic formula, we mean any expression of one of the two
forms ti — ti and t\ < i2, where t\ and t^ are any terms. The set of
formulas is inductively defined by the rules:

1. Every atomic formula is a formula.
2. If F and G are formulas, then ~ F and (F D G) are formulas,

and for every variable w,-, the expression VviF is a formula.

Free and Bound Occurrences of Variables. Let Vi be any vari-
able. For any term t, all occurrences of Vi in t are called free occur-
rences. Also for any atomic formula A, all occurrences of v,- in A are
called free occurrences. For any formulas F and G, the free occur-
rences of Vi in (F D G) are those in F together with those in G. The
free occurrences of t?,- in ~ F are those in F. Now, t>, has no free
occurrences in Vvj-F; all occurrences of Vi in Vvj-F are called bound
occurrences. For any j ^ z, the free occurrences of «,- in VvjF are
those of F.
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Sentences. By a sentence, we mean any formula in which no vari-
able has any free occurrence. Sentences are sometimes called closed
formulas. By an open formula, we mean a formula which is not
closed (i.e., at least one variable has at least one free occurrence in
it).

Substitution of Numerals for Variables. For any natural num-
ber n, by n we mean the numeral designating n (i.e., the symbol "0"
followed by n accents). [For example, 5 is the expression 0'"".]

For any variable u,-, we sometimes write F(vi) to mean any for-
mula in which Vi is the only free variable, in which case, by F(n)
we mean the result of substituting the numeral n for every free oc-
currence of Vi in F(VI~). More generally, we write F(v^,... ,t?jn) for
any formula in which V{1 ... ,Vin are the only free variables, and for
any numbers &i , . . . ,k n , F(ki,...,kn) is understood to be the result
of substituting & i , . . . , kn for all free occurrences of v^,..., v±n re-
spectively. We call the sentence, F(k\,..., kn), an instance of the
formula F(vtl,..., vin).

We call a formula, F(vilt... , u;n), regular if i\ = l,...,in = n.
Thus, a regular formula F is one such that for any i, if Vi is a free
variable of F, then for any j < i, Vj is also a free variable of F. Thus,
a regular formula can be written as F(v\,..., vn).

Degrees and Induction. By the degree of a formula, we mean the
number of occurrences of the logical connectives ~ and D and the
quantifier V. Thus,

1. Atomic formulas are of degree 0.
2. For any formulas F and G of respective degrees d\ and d2» the

formula ~ jP is of degree d\ + 1; the formula (F± D F-i) is of
degree d\ + d? + 1, and for any variable «,-, the formula Vvji'i
is of degree d\ + 1.

We presume familiarity with the principle of mathematical induc-
tion from which it follows that to show that a given property holds
for all formulas, it suffices to show that it holds for all atomic formu-
las and that for any formula F, if the property holds for all formulas
of lower degree than F, then it also holds for F.

Abbreviations. We employ the following standard abbreviations,
where F, FI and F? are formulas, v,- is any variable, and ii and ti
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are any terms.

In displaying formulas and terms, we shall often omit parentheses
if no ambiguity can result. For example, in displaying a formula or
term standing alone, we can drop the outermost parentheses—e.g.
we can write F D G instead of (F D G); also the term (vi + t>2)
standing alone can be abbreviated v\ + v^, and ((vi + v2) • 173) could
be abbreviated (t>i + ^2) • ̂ 3.

Designation. We recall that by a constant term, we mean a term
with no variables. Each constant term c designates a unique natural
number in accordance with the following rules.

1. A numeral n designates n.
2. If c\ and c2 designates n\ and n2 respectively, then (GI + c2)

designates the sum of n\ and n2; (ci • c2) designates the product
of HI and n2; (ci E c2) designates the number n"2; and c\
designates n\ + 1.

As an example, the constant term ((0"'+0')-(0" E 0'"))' designates
the number (4 • 23) + 1, or 33.

§2. The Notion of Truth in £#. We now wish to define
what it means for a sentence of £g to be true. The definition will be
by induction on the degrees of sentences. The following conditions
provide an inductive definition of truth.

TO'. 1. An atomic sentence c\ — c2 (ci and c2 are constant terms)
is true iff c\ and c2 designate the same natural number
(under the designation rules given above).
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2. An atomic sentence c\ < c2 is true iff the number desig-
nated by ci is less than or equal to the number designated
by c2.

T\i A sentence of the form ~ X is true iff X is not true.
T2: A conditional sentence X D Y is true iff either X is not true or

both X and Y are true.
TS: A universal sentence VviF is true iff for every number n, the

sentence F(n) is true.

Condition TO states the truth conditions for atomic sentences out-
right. Conditions Ti, TI and T3 define the truth of a non-atomic sen-
tence in terms of the truths of all sentences of lower degree. [Note
that in TS, F is of lower degree than Vv,-F. Hence for every n, F(n)
is of lower degree than Vwt-.F. Since ^ViF is a sentence, no variable
other than Vi is free in JF, and so F(n) is also a sentence.]

An open formula F(vi1,..., v,-fe) cannot be said to be true or false,
but we call the formula correct if for all numbers ni, . . . ,nfc, the
sentence F(HI, ..., nfc) is true.

Exercise 1.

1. Show that for any sentences X and Y, the sentence X A Y" is
true iff X and Y are both true.

2. Show that X V Y" is true iff at least one of X and Y is true.
3. For any formula F in which v^ is the only free variable, show

that the sentence 3v,-.F is true iff there is at least one number
n such that F(n) is true.

Substitution of Variables. Consider a formula F(v\) with Vi as
the only free variable. For any variable Vi (i ^ 1), we define F(vi)
as follows:

1. If Vi does not occur as a bound variable of F, then F(vi) is the
result of substituting Vi for all free occurrences of v\ in F.

2. If Vi does occur as a bound variable of F, we take the smallest
number j such that Vj does not occur in F, then we substitute
Vj for all occurrences of v,- in -F—call this formula F'(VJ)—and
then we substitute «,• for all free occurrences of V] in F'(VJ).
This formula we call F(vi).

For example, let F(v\) be the formula 3v^(v2 ^ «i). This formula
is correct. By F(v^) we mean not the obviously incorrect formula
31*2(^2 7^ f2)5 but the correct formula BV^VS ^ v%).

A similar definition applies to regular formulas F(v\,..., vn) with
more than one free variable. For any variables v^,..., v,-n, we first
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rewrite all bound variables of F so that none of v^,..., t;,-n occurs as
a bound variable and then we simultaneously substitute v^,..., v±n

for the free occurrences of v\,..., vn, and we denote this formula by
F(Vil,...,vin).

Two sentences are called (arithmetically) equivalent iff they are
either both true or both false. Two open formulas, -F(w,1,... ,Vik)
and G(v^ . ..,v,- fc), with the same free variables are called equiva-
lent iff for all numbers n*,. . . ,n&, the sentences F(n\,... ,n&) and
G(ni,..., nk) are equivalent.

§3. Arithmetic1 and arithmetic1 Sets and Relations.
For any formula F(VI) with v\ as the only free variable, we say that
F(VI) expresses the set of all numbers n such that F(n) is a true
sentence. Thus, F(VI) expresses the set A iff for all numbers n:

A regular formula F ( V I , . . . , vn) will be said to express the set of all
n-tuples (&i, . . . , kn) of natural numbers such that F(k\ , . . . , kn) is a
true sentence; so F(VI, . . . ,t;n) expresses the relation R(XI, . . . ,a;n)
iff for all numbers &i, . . . , kn, the following condition holds:

As an example, the set of even numbers is expressed by the formula
3^2(^1 = 0" • ̂ 2) (since a number is even iff it is divisible by 2).

A set or relation will be called Arithmetic (note the capital "A")
if it is expressed by some formula of £#. A set or relation is called
arithmetic (note the small "a") if it is expressed by some formula of
CE in which the exponential symbol "E" does not occur. Arithmetic
relations (and sets) can be informally characterized as those definable
in first-order logic from plus, times and power; arithmetic relations
are those definable from plus and times alone. [I did not include the
less than or equal to relation because the relation x\ < x? is itself
definable from plus and times—in fact, just from plus—since it is
expressed by the formula 3v^(vi + v$ = v?).]

In a later chapter, we will prove a non-trivial result due to Godel—
namely that the exponential relation xy = z is itself definable from
plus and times alone, and hence that every Arithmetic set and rela-
tion is arithmetic. But until this is proved, I will continue to use the

1 The accent is on the syllable "met".
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term "Arithmetic."
A function f(xi,...,xn) (from n-tuples of natural numbers to

natural numbers) will be called Arithmetic if the relation

is Arithmetic. Thus, /(xi, . . . , xn) is Arithmetic iff there is a formula
F(VI, . . . ,vn, vn+i) such that for all numbers x\,...,xn and y, the
sentence F(XI, . . . ,~xn,y) is true iff /(xi, . . . ,xn) = y.

We will sometimes say that a property P (of natural numbers) is
Arithmetic, meaning that the set of numbers having the property P
is Arithmetic. We will also use the collective term "condition" to
mean either a relation or a property.

Exercise 2.

1. Show that the relation ux divides y" is arithmetic.
2. Show that the set of prime numbers is arithmetic.

Exercise 3. For any set A of natural numbers and any function /(x)
(from natural numbers to natural numbers) by /-1(A), we mean the
set of all n such that f(n) € A. Prove that if A and / are Arithmetic,
then so is /~1(A). Show the same for "arithmetic."

Exercise 4.

1. Given two Arithmetic functions /(x) and g ( y ) , show that the
function f(g(y)} is Arithmetic.

2. Given two Arithmetic functions /(a;) and g(x,y}, show that the
functions g ( f ( y ) , 3/),<7(x,/(j/)) and /(<7(x,y)) are all Arithmetic.

Exercise 5. Let A be an infinite Arithmetic set. Then for any num-
ber y (whether in A or not), there must be an element x of A which is
greater than y. Let R(x,y) be the relation: cc is the smallest element
of A greater than y. Prove that the relation R(x,y) is Arithmetic.

II. Concatenation and Go'del Numbering

§4. Concatenation to the Base b. For any number b > 2,
we will define a certain function x *t y called concatenation to the
base b which will play a basic role throughout this volume.

We shall first give the definition for the familiar base 10. For any
numbers m and n, we define m *io n to be the number which when
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written in ordinary base 10 notation consists of m followed by n. For
example, 53 *10 792 = 53792. We note that 53792 = 53000 + 792,
which is 53 • 103 + 792. We note that 3 is the number of digits of 792
(when written in base 10 notation), or as we will say, 3 is the length
of 792 (in base 10 notation).

More generally, m *io n = m • lQf(n) -f n, where i(n) is the length
of n (written in base 10 notation).

Still more generally, for any number 6 > 2, we define m *j n to be
the number which, in base b notation, consists of m in base b notation
followed by n in base b notation. Then m *j n = m • &*«>(n) + n, where
ib(n) is the length (number of base b digits) of n written in base b
notation. The following proposition is basic.

Proposition 1. For each b > 2, the relation x*i,y = z is Arithmetic.

Before turning to the proof, we state the essential idea. Consider
first the familiar base 10. For any positive number n, the number
^io(^) is simply the smallest number k such that 10fc > n, and 10^10(n)
is simply the smallest power of 10 greater than n (e.g.

which is the smallest power of 10 greater than 5368). In general, for
any base b > 2 and for any number n, &**(n) is the smallest power of
b greater than n if n is positive; otherwise 6.

Proof of Proposition 1. Let b be any number > 2.

1. Let Powij(x) be the condition that a; is a power of b. This
condition is Arithmetic, because Powb(x) holds iff 3y(x = by}.
[More formally, the set of powers of b is expressed by the formula
3^2(^1 = (& E ^2))- We shall not be this formal in the future!]

2. The relation bfb(x> = y (as a relation between x and y) is, as we
have noted, equivalent to the condition that

where s(x, y ) is the relation "t/ is the smallest power of b greater
than a". It is Arithmetic because s(x,y) holds iff

Hence it is Arithmetic. [The condition x < y is equivalent to
x < y/\ ~ (x = y). Hence it is Arithmetic.]

3. Finally, the relation x • be>>^ + y — z (which is x *& y = z) is the



22 Chapter II. Tarski's Theorem for Arithmetic

condition:

Thus, the relation x *& y = z is Arithmetic.

Let us note that for any positive integers x,j/, and z,

But if y — 0, this can fail. [To use Quine's example,

but 5 *io (0 *io 3) = 5 *io 3 (since 0 *io 3 = 3), which is 53.] And
so if we omit parentheses, it will be understood that parentheses are
to be associated to the left (e.g. x *& y *(, z means (a; *;, y) *j z; not
x*b(y*bz~))

Corollary 1. For each n > 2 (and any b > 1), the relation

(as an (n + l)-ary relation among x\,... ,xn, y) is Arithmetic.

Proof. By induction on n > 2. We have already proved this for n = 2.
Suppose n is a number > 2 such that the relation x\ *{,... *& xn = y
is Arithmetic. Now, x\, *t . . . *& xn *b Xn+i — y iff

Hence this relation is also Arithmetic.

§5. Godel Numbering. Arithmetic sentences (sentences of
£.E, that Is) talk about numbers, not expressions of CE- The purpose
of assigning Godel numbers to expressions is to enable sentences
to talk about expressions indirectly by directly talking about their
Godel numbers.

The Godel numbering we will use is a modification of one due
to Quine [1940]. Quine formulated his language in a 9-sign alpha-
bet of symbols $1,82,... ,Sg. Then to any compound expression
8^812 ... 5,-n, he assigned the Godel number which when written in
base 10 notation is i\ii... in (e.g. the expression 838182 is assigned
the number 312).

Our language CE uses thirteen symbols, and so we will use Quine's
idea, only taking concatenation to the base thirteen rather than the
usual base ten. [The number thirteen happens to be a prime number,
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and we will see in a later chapter that taking concatenation to a
prime base has certain technical advantages over a composite base
like 10.]

We shall use "77", V and "6", as the base thirteen digits for 10,
11 and 12 respectively. We assign Godel numbers to our thirteen
symbols as follows:

Then, in any string of these symbols, we replace each symbol by
its corresponding base 13 digit and read the resulting string of base
13 digits to the base 13. For example, the Godel number of the string
consisting of the third symbol followed by the sixth symbol followed
by the second symbol is the number whose base 13 representation is
"362"—i.e. the number 2 + (6 • 13) + (3 • 132).

For any n > 0, we let En be the expression whose Godel number
is n. Now, any string of accents has Godel number 0, and we shall
define EQ to be just the accent symbol standing alone. We are, thus,
using the word expression to mean any string of our 13 symbols that
does not begin with an accent unless it is the accent by itself.

For any expressions Ex and Ey, by ExEy we mean the expression
consisting of Ex followed by Ey. It is immediate from our Godel
numbering rule that the Godel number of ExEy is x *13 y.

Our reason for choosing 0 as the Godel number of the accent
(prime) symbol is this: for any number ra, the numeral n (like every
other expression) has a Godel number. We want our Godel num-
bering to be such that the Godel number of the numeral n is an
Arithmetic function of n. Well, the numeral n consists of the sym-
bol "0" followed by n accents, so its Godel number, when written in
base 13 notation, consists of "1" followed by n occurrences of "0".
Hence it is simply 13ra.

Discussion. Actually, all results of this chapter and the next two
go through for any Godel numbering having the following two prop-
erties:

1. There is an Arithmetic function x o y such that for any expres-
sions X and Y with respective Godel numbers x and y, the
number x o y is the Godel number of XY\

2. For any n, the Godel number of the numeral n is an Arithmetic
function of n.

We chose the particular Godel numbering we did primarily to
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achieve these two properties as quickly as possible. We might also
remark that any Godel numbering possessing the first of the two
properties must also possess the second (this will not be evident
until a couple of chapters later; it rests on the particular way we
chose to name the natural numbers).

Of course we could have used a base 10 instead of a base 13 Godel
numbering, say, by assigning as Godel numbers to our thirteen sym-
bols the numbers 1, 0, 2, 3, 4, 5, 6, 7, 89, 899, 8999, 89999, 899999
and 8999999, and the reader who feels more at home with the familiar
base 10 notation may use this Godel numbering if he wishes. Under
this Godel numbering, the Godel number of n would be 10" rather
than 13n. But, as we remarked before, there are certain technical
advantages to working with a prime base like 13.

For the remainder of this chapter (and for all of the next chapters),
I will be considering only the base 13 and, henceforth, write x * y
to mean x *i3 y. [But the reader who prefers the base 10 can read
"ce * j/" as x *io y. But only whenever we write 1337, he or she must
write 10* .1

///. Tarski's Theorem

§6. Diagonalization and Godel Sentences. We let T be
the set of Godel numbers of the true sentences of CE- This set T
is a perfectly well defined set of natural numbers. Is it Arithmetic?
We are going to show that it isn't (Tarski's theorem).

As in Chapter I, a sentence X will be called a Godel sentence for
a number set A if either X is true and its Godel number is in A or X
is false and its Godel number is not in A. We now aim to show that
for every Arithmetic set A, there is a Godel sentence (from which
Tarski's theorem will easily follow).

Almost a whole book could be written on various clever known
methods for constructing Godel sentences. Godel's original method
involves showing the existence of an Arithmetic function sub (a,?/)
such that for any numbers x and y, if x is the Godel number of
a formula jP(vi), then sub(x,y) is the Godel number of F(jy). To
carry this out involves arithmetizing the operation of substituting
numerals for variables, and this is a relatively complicated affair.
Instead, we shall utilize a simple but clever idea due to Tarski [1953].

Informally, to say that a given property P holds for a given num-
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her n is equivalent to saying that for every number x equal to n,
P holds for x. Formally, given any formula F(VI) with v\ as the
only free variable, the sentence F(n) is equivalent to the sentence
VT>I(WI = n D F(VI)). [Incidentally, it is also equivalent to the sen-
tence 3vi(v-i = n A F(VI)).] The whole point now is that it is a
relatively easy matter to show that the Godel number of the sen-
tence Vv\(vi = n D F(VI)) is an Arithmetic function of the Godel
number of -F(fi) and the number n.

For any formula F(vi) and any n, we henceforth write F[n] to
mean the sentence Vt>i(t>i = n D F(VI)). To repeat an important
point, the sentences F(n) and F[n], though not the same, are equiv-
alent sentences (both true or both false.)

As a matter of fact, for any expression E, whether a formula
or not, the expression Vvi(vi = n D E} is a perfectly well-defined
expression (though a meaningless one if E is not a formula), and
we shall write E[n] as an abbreviation of the (possibly meaningless)
expression VVi(ui = n D E). If E is a formula, then E[n] is also a
formula but not necessarily a sentence. If E is a formula with vi as
the only free variable, then E[n] is, of course, a sentence, but in all
cases, E[n] is a well defined expression.

For any numbers e and n, by r(e,n), we shall mean the Godel
number of the expression E\n\ where E is the expression whose Godel
number is e. Thus, for any numbers x and y, the number r ( x , y } is
the Godel number of Ex[y}. The function r(x,y} plays a key role in
this volume, and we now show that it is Arithmetic.

Ex;[y] is the expression Vui(vi = y D Ex). Let k be the Godel
number of the expression "Vvi(«i =". [The reader can write this
number down if he wishes.] The implication symbol " D" has Godel
number 8 and the right parenthesis has Godel number 3. The nu-
meral y has Godel number I3y and the expression Ex has Godel
number x. Let us visualize the situation as

We see that Ex[y] has Godel number k * 13y * 8 * x * 3 and so
r(x,y) = k * I3y * 8 * x * 3. The relation r ( x , y ) = z is obviously
Arithmetic (it can be written as 3w(w = 13y A z = k*w*8*x *3)).

We have, thus, proved

Proposition 2. The function r(x,y) is Arithmetic.
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The function r(x,t/) will crop up many times in this volume. We
call it the representation function of CE •

Diagonalization. We now let d(x) = r(x,x), and we call d(x) the
diagonal function. Since r ( x , y ) is Arithmetic, then d(x~) is obviously
Arithmetic. For any number n, d(n) is the Godel number of £n[n].

For any number set A, we let A* be the set of all n such that
d(n) € A. [Thus, A* = d~l(A).}

Lemma 1. If A is Arithmetic, then so is A*.

Proof. A* is the set of all numbers x such that 3y(d(x) = y A y € A).
Since the diagonal function d(x) is Arithmetic, there is a formula
D(vi,V2) expressing the relation d(x) = y. Now suppose F(VI) is a
formula expressing the set A. Then A* is expressed by the formula
3vi(D(vi, v?) A F(VZ))' [Alternatively, it is expressed by the formula
Vu2(£>(vi,t;2)DF(v2)).]

Theorem 1. For every Arithmetic set A, there is a Godel sentence
for A.

Proof. This really follows from the above lemma and Lemma D of
Chapter 1 (cf. remarks below), but to repeat the proof for the partic-
ular language CE, suppose A is Arithmetic. Then A* is Arithmetic
by the above lemma. Let H(vi)_be a formula expressing A*, and let h
be its Godel number. Then H[h] is true <-»• h 6 A* <-»• d(h) 6 A. But
d(h) is the Godel number of H[h], and so H[h] is a Godel sentence
for A.

Remarks. Applying the abstract framework of Chapter 1 to our
present language £#, we recall that we considered a function which
assigned to every expression E and every number n, an expression
E(n). Well, for the language £#, we take E(n) to be E[n], as we
have defined it. Our "predicates" will now be formulas F(VI) in
which vi is the only free variable. Then the lemma to Theorem 1
says that condition G\ on page 7 holds for the language £#. Thus,
Theorem 1 above is but a special case of (6) of Lemma D on page 8.

Tarski's Theorem. The class of Arithmetic sets is obviously closed
under complementation because if F(v\) expresses A, then its nega-
tion ~ F(v\) expresses the complement A of A. And so conditions
GI and <J2 of Chapter 1 both hold for the language CE- Therefore,
by Theorem T of Chapter 1, the set T of Godel numbers of the true
sentences of LE is not expressible in C-E—i.e. it is not Arithmetic.

To repeat the proof for the special case of CE, there cannot be
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a Godel sentence for T, since such a sentence would be true if and
only if it were not true. But if T were arithmetic, there would be
a Godel sentence for T by Theorem 1. Therefore, the set T is not
Arithmetic. Hence the set T is not Arithmetic either. And so we
have proved

Theorem 2—Tarski's Theorem. The set T of Godel numbers of
the true Arithmetic sentences is not Arithmetic.

In the next chapter, we will turn to a formal axiom system for
Arithmetic. On the surface, it will appear plausible that all true
sentences are provable in the system, but it will turn out that the set
of Godel numbers of the provable sentences of the system, unlike the
set T, is Arithmetic. Therefore, by Theorem 2, truth and provability
don't coincide. In fact, using Th. 1, we will be able to exhibit a true
sentence not provable in the system.

Exercise 6.

1. By the method we have just studied but using a base 10 Godel
numbering, find a Godel sentence X for the set of even numbers.
Then X is true just in case the Godel number of X is even. Is
the sentence X true or false?

2. Do the same for the set of odd numbers.

Exercise 7. Find an Arithmetic function /(#) such that for any
number n, if n is the Godel number of a formula F(VI) with just the
free variable vi,/(n) is the Godel number of a Godel sentence for
the set expressed by F(v\). [Such a function /(x) might aptly be
called a Godelizer],

Exercise 8. [Not too easy!] Prove that for any Arithmetic sets A
and B there are sentences X and Y such that X is true iff A contains
the Godel number of Y, and Y is true iff B contains the Godel
number of X. This is an example of what might be thought of as
cross-reference; X can be thought of as asserting that the Godel
number of Y is in A, and Y can be thought of as asserting that the
Godel number of X is in B.



Chapter III

The Incompleteness of Peano Arithmetic with

Exponentiation

/. The Axiom System P.E.

§1. The Axiom System P.E. We shall now turn to a formal
axiom system which we call Peano Arithmetic with Exponentiation
and which we abbreviate "P.E.". We take certain correct formulas
which we call axioms and provide two inference rules that enable us
to prove new correct formulas from correct formulas already proved.
The axioms will be infinite in number, but each axiom will be of
one of nineteen easily recognizable forms; these forms are called ax-
iom schemes. It will be convenient to classify these nineteen axiom
schemes into four groups (cf. discussion that follows the display of
the schemes). The axioms of Groups I and II are the so-called logical
axioms and constitute a neat formalization of first-order logic with
identity due to Kalish and Montague [1965], which is based on an
earlier system due to Tarski [1965]. The axioms of Groups III and
IV are the so-called arithmetic axioms.

In displaying these axiom schemes, F, G and H are any formulas,
Vi and Vj are any variables, and t is any term. For example, the
first scheme L\ means that for any formulas F and G, the formula
(F D (G D F)) is to be taken as an axiom; axiom scheme £4 means
that for any variable Vi and any formulas F and <?, the formula

is to be taken as an axiom.

28
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Group I—Axiom Schemes for Prepositional Logic

Group II—Additional Axiom Schemes for First-Order
Logic with Identity.

L4: (Vvt(F D G) D (W.-JF1 D V»,-G))
LS: (F D VviF), provided Vj does not occur in F.
L@: 3vi(vi = t), provided Vi does not occur in t.
LJ: (vi — t D (XiViXz D XitXz)), where X\ and X? are any

expressions such that X\V{X? is an atomic formula. [Alterna-
tively, this scheme can be written as (i>,- = t D (Y\ D ^2))?
where Y\ is any atomic formula, and Yj is obtained from Y\ by
replacing any one occurrence of Vi in Yi by the term t.]

Group III—Eleven Axiom Schemes Having Only One
Axiom Apiece

Group IV. This consists of only one axiom scheme—the scheme of
mathematical induction—but infinitely many axioms, one for each
formula F(VI). In displaying this scheme, F(VI) is to be any formula
at all (it may contain free variables other than ^i). By .Ffui'] we
shall mean any one of the formulas

where t>,- is any variable that does not occur in F. [Each of these
formulas is equivalent to the formula F(v\}—viz. the result of sub-
stituting the term v\ for all free occurrences of vi in -P^vi).] Here is
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the scheme.

Discussion. The axioms of Group I constitute a standard system
for prepositional logic (cf. Church [1956]). The axioms of Group II
(due to Montague and Kalish) have the technical advantage of being
stated without appeal to the notion of substitution of terms for free
occurrences of variables—indeed, even the notions of free and bound
occurrences of variables are circumvented. Instead, we have only the
simpler notion of replacement—i.e. substitution of a term for one
occurrence of a variable which is used in axiom scheme £7.

Inference Rules. The inference rules of the system P.E. are two
standard ones.

Rule 1 [Modus Ponens]—From F, (F D G) to infer G.
Rule 2 [Generalization]—From F to infer Vv;-F.
By a proof in the system P.E., we mean a finite sequence of for-

mulas such that each member of the sequence is either an axiom or is
directly derivable from two earlier members by Rule 1 or is directly
derivable from some earlier member by Rule 2. A formula F is called
provable (in the system P.E.) if there is a proof whose last member
is jP—such a sequence is called a proof of F. A formula is called
refutable in P.E. if its negation is provable in P.E.

//. Arithmetization of the Axiom System

We now aim to prove that the set of Godel numbers of the prov-
able formulas of P.E. (unlike the set T of the last chapter) is an
Arithmetic set.

§2. Preliminaries. We already know that for any base b > 2,
the relation x *{, y = z is Arithmetic and for each n > 2, the relation
x\ *6 x-i * & . . . *& xn = y is Arithmetic (Proposition 1 and its Corollary,
last chapter).

We shall say that a number x begins a number y in base b notation
if the base b representation of x is an initial segment of the base b
representation of y. [For example, in base 10 notation, 593 begins
59348; also 593 begins 593.] The number 0 doesn't begin any number
except 0. [We don't say that 0 begins 59, even though 59 = 059.]
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We write uxBby" for "x begins y in base b notation". We say that x
ends y in base b notation (in symbols, xEby) if a; is a final segment
of y. [For example, in base 10 notation, 348 ends 59348; also 48 ends
59348, and so does 59348 itself. Also, 0 ends 570, as does 70, as does
570.] We say that a; is part of y (in base b notation) — in symbols,
xPby — if x ends some number that begins y. [For example, in base
10 notation, 93 is part of 59348; so is 934, so is 34. Also 0 is part
of 5076, but 0 is not part of 576.] Concerning the relation "a; begins
y" (in base b notation), if 0 is not part of ?/, then the relation holds
iff either a; = y or x •£ 0 and x *b z = y for some z. However, in the
more general case (that 0 might be part of y), x begins y iff either
x = y or x ^ 0 and (a; • w) *& z = y for some z and some power w of
b. [For example, in base 10 notation, 5 begins 5007 since the above
condition holds for z = 7 and w = 100. Also, 5 begins 57 since the
condition holds for z = 7 and w = 1.] Let us note that the w and z
involved are necessarily both less than or equal to (in fact less than)
y — which is important, not for this chapter, but for the next.

The relations ux ends y" and "x is part of y" are even simpler to
describe, and we have the following equivalences.

Thus, the relations xSby, xEby and xPby are all Arithmetic. Also

We, thus, have

Proposition 1. For any b > 2 and any n > 2, the following rela-
tions are Arithmetic.

1. xSby
2. xEby
3. xPby
4. xi*b... *b xnPby

Remarks. In the above equivalences, each time we wrote

we could have more simply written "3z", and this would have been
enough to show that the relations in question are Arithmetic. Our
purpose in writing the more complex expressions will emerge in later
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chapters in which we will need to know that these relations are not
only Arithmetic, but belong to the much more narrow class of rela-
tions known as constructive arithmetic relations.

For the remainder of this chapter, b will be 13, and to reduce
clutter, we delete the subscript 6 and just write xBy, xEy or xPy.
Also we, henceforth, write xy for x *j3 y. [This should lead to no
confusion with multiplication since we always write a; • y for x times
y.] We also write xPy for ~ xPy and x\x^ ... xnPy for

Finite Sequences. The reader may have wondered what in the
world the symbol "jf" is doing in our language £#, since it was never
used for anything in the last chapter! Well, we have reserved it for
forming formal sequences of expressions in the other twelve symbols.
For any such expressions X\ , . . . , Xn, the expression J.X"i J -X^tt • • • Xn%
serves as the formal counterpart of the n-tuple (Xi, . . . , Xn), and its
Godel number will be called a sequence number.

Explained otherwise, we let K\\ be the set of numbers n such
that 8 (the base 13 digit for 12) does not occur in (the base 13
representation of) n. All expressions in which the symbol "f" does
not occur have their Godel numbers in the set K\\ (this includes all
numerals, variables, terms and formulas — all the so-called meaningful
expressions). To any finite sequence (ai, . . . ,an) of numbers in KU,
we assign the number SaiSa^S ...San6 which we call the sequence
number of the sequence (ai, . . . , on). We call x a sequence number if
x is the sequence number of some finite sequence of elements of KH.
We let Seq(a:) be the property that a; is a sequence number. We let
x € y be the relation — y is a sequence number of some sequence of
which x is a member. [Thus, for any numbers xi,...xn in -K"n, if
y = 8x18 . ..6xnS, then x € y iff x is one of the numbers »i,. . .,xn.]
We let x -< y be the relation — z is the sequence number of a sequence
in which x and y are members such that the first occurrence of x in
the sequence is earlier than the first occurrence of y in the sequence.

Proposition 2. Each of the conditions Seq(t/), x € y and x -< y is
z

Arithmetic.

Proof.

1. Seqz <-»• 6Bx A 6 Ex A 6 ̂  z A dSPx A (Vy < x)(SOyPx D 6 By)
2. x € y <-> Seqy A 6x8 Py A 8Px
3. x*(y+*x£.zf\y£z/\ (3w < z)(wBz A x 6 w/\ ~ y € w)
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We, henceforth, write (Vx € y)( ) to abbreviate

and we write (3x,y -< z)( ) to abbreviate

Formation Sequences. Our definitions in the last chapter of terms
and formulas were inductive; we gave rules for constructing new
terms from old ones and new formulas from old ones. We must now
replace these inductive definitions by explicit definitions.

For any expressions X, Y and Z, define 1R,t(X,Y,Z) iff Z is one
of the expressions (X + Y),(X • Y),(X E Y] or X'. [We might
call Ht the formation relation for terms.} By a formation sequence
for terms, we mean a finite sequence Xi,... ,Xn of expressions such
that for each member Xi of the sequence, either Xi is a variable or a
numeral, or there are earlier members Xj and Xk (j < i,k < i) such
that Rt(Xj,Xk,Xi). Then we can explicitly define an expression X
to be a term iff there exists a formation sequence for terms of which
X is a member.

Similarly with formulas. Define 7^/(JT, Y, Z) to hold if Z is one
of the expressions ~ X or (X 3 Y), or Z is the expression Vv{X
for some variable V{. [7£/ can be called the formation relation for
formulas.] Then we define a sequence Xi,..., Xn to be a formation
sequence for formulas if for each i < n, either Xi is an atomic formula
or there are numbers j < i and k < i such that 7i/(Xj,Xk,Xi).
Then an expression X is a formula if and only if there is a formation
sequence for formulas of which X is a member.

§3. Arithmetization of the Syntax of P.E. We recall
that we are using the notation UEX" for the expression whose Godel
number is x.

For any sequence EXl, EX2,..., EXn of expressions where x\,... ,xn

are all in JTii, by the Godel number of the sequence (EXl,..., EXn),
we mean the sequence number of the sequence (xi,..., xn) of num-
bers. [It is the Godel number of the expression $EXl$EX3$ ... $EXn%.}

We will list a chain of conditions (sets and relations) leading up to
the key ones—PE(X) (Ex is a provable formula of P.E.) and RE(X}
(Ex is a refutable formula of P.E.) and show that each condition
is Arithmetic. For purposes that will be relevant only in a later
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chapter, the reader should note that the only universal quantifiers
we will introduce are of the form (Vx < y), where y is a variable or a
numeral (such quantifiers are called bounded universal quantifiers).

For any numbers x and y, we shall refer to the Godel numbers
of (Ex D Ey), ~ EX,(EX + £„), (Ey • Ey)(Ex E Ey), Ex', Ex = Ey

and Ex < Ey as x imp y, neg(x), x pi y, x tim y, x exp y, s(x),
x id y and x le y respectively. Of course, these eight functions are
all Arithmetic (for example x imp y = 2x8y3; neg(x) = 7x (i.e.
7**)).

Now we list the conditions (underneath each, we show that it is
Arithmetic).

1. Sb(x) — Ex is a string of subscripts:

2. Var(x) — Ex is a variable:

3. Num(x) — Ex is a numeral:

4. Ri(x,y,z}—The relation nt(Ex,Ey,Ez) holds:

5. Seqt (x)—Ex is a formation sequence for terms:

6. tm (a;)—Ex is a term:

7. fo(#)—Ex is an atomic formula:

8. Gen(x,y)—^ = VwEx for some variable w:

9. Aa(a;, y,z)—Kf(Ex,Ey,E2) holds:

10. Seqf(a:)—Ex is a formation sequence for formulas:
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11. fm(a;)—Ex is a formula:

12. A(x)—Ex is an axiom of P.E.:

See Note below

13. M.P. (x,y,z)—Eg is derivable from Ex and Ey by Rule 1:

14. Der (x,y,z)—Eg is derivable from Ex and Ey by Rule 1, or is
derivable from Ex by Rule 2:

15. Pf(ar)—^ is a proof in P.E.:

16. PE(x}—Ex is provable in P.E.:

17. RE(x}—Ex is refutable in P.E.:

Note on the Axioms. To show that A(x) is Arithmetic, we break
it up into nineteen parts (one for each of the axiom schemes). For
each n < 7, we let Ln(x) be the condition that Ex is an axiom of
scheme Ln, and for each n < 12, we let Nn(x) be the condition that
Ex is an axiom of scheme Nn. The verifications that each of these
nineteen conditions is Arithmetic are fairly uniform, and we give
only sample cases.

Consider first LI(X). Well, Ex is an axiom of L\ iff there are
formulas Ey and Ez such that Ex = (Ey D (Ez D Ey)), and so
LI(X) is the following condition:

The conditions L^(x) and L^(x) can be handled similarly; we leave
this to the reader.

As for Group II, let us take L^x) as a sample case. Let <f>(y, z, w)
be the Godel number of VEy((Ez D Ew) D (MEyEz D VEyEw)).
The function <p(x,y,z) is easily seen to be Arithmetic. Then L4(x)
holds iff there are numbers y, z and w (all < x) such that var(y),
fm(z),fm(w) and x = <p(y,z,w). [The reader can write this all down
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symbolically, if desired]. We leave the other cases of Group II to the
reader (only it should be noted that in LQ, we used the existential
quantifier for abbreviation, and so in unabbreviated notation, L§ is
the scheme: ~ Vu; ~ Vi — i).

Group III is trivial since each of the schemes Ni~N\i contains
only one axiom apiece, and so for each i < 12, JV,-(x) is simply the
condition x = gi, where gt is the Godel number of the axiom Nj.

Group IV (Axiom Scheme JVi2) consists of all the induction ax-
ioms. To show that NI%(X) is an Arithmetic condition, one first
verifies that the relation Ex is a formula and Ey is one of the formu-
las, jE^f^i'] is an Arithmetic relation between x and y. We leave this
to the reader. It then becomes obvious that NI%(X) is Arithmetic.

Having shown that each of the conditions Li(a;),... ,L?(x} and
NI(X) .. .,Ni2(x) is Arithmetic, we take A(x) to be the disjunction
of these 19 conditions, and so A(x) is Arithmetic.

This completes our arithmetization of the syntax of P.E. and so
we have:

Proposition 3. All the conditions (1)-(17) above are Arithmetic.

§4. Godel's Incompleteness Theorem for P.E. We let
PE be the set of Godel numbers of the provable formulas of P.E. and
RE be the set of Godel numbers of the refutable formulas of P.E. We
have shown that these two sets are Arithmetic. Let -P(#i) and
be formulas that express them in LE- Then the formula ~
expresses the complement PE of PE. By the lemma to Theorem 1
of the last chapter, we can find a formula H(v\) expressing the set
PE • Then, by the proof of Theorem 1, Ch. 2, its diagonalization
H[h] is a Godel sentence for the set PE- Hence is true iff it is not
provable in P.E. Since P.E. is a correct system, then H[h] must be
true but not provable in P.E. Since the sentence ~ H[h] is false, it is
not provable in P.E. either.

Alternatively, using the dual argument of Chapter 1, since the
set RE is Arithmetic, so is R*E, so we can take a formula K(VI)
expressing R'fe. Its diagonalization K[k] is then a Godel sentence for
RE- Hence it is true iff it is refutable in P.E. Then K[k] must be
false but not refutable in P.E. Hence its negation ~ K[k] is true but
not provable in P.E. Thus, K[k] (like H[h]) is neither provable nor
refutable in P.E. Either way, we have proved

Theorem 1. The axiom system P.E. is incomplete.
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Remarks. The above incompleteness proof is the simplest one we
know. Part of the simplicity is due to the use of the Tarski truth
set (in chapters 5 and 6 we consider two other incompleteness proofs
that do not use the truth set); part is due to the fact that we let ex-
ponentiation in on the ground floor (in the next chapter we consider
a more austere system in which this is not the case) and part of the
simplicity is due to our having taken the Montague-Kalish axiomati-
zation of first-order logic with identity. To obtain an incompleteness
proof for a more standard axiomatization of arithmetic, one must
arithmetize the operation of substituting terms for free occurrences
of variables in formulas. In the exercises below, we indicate the key
steps of an incompleteness proof for the more standard formalization.

Exercise 1. Let Fr(x,y) be the relation UEX is a variable, Ey is
a formula and Ex has at least one free occurrence in Ey

n . Show
that this relation is Arithmetic. [Hint: For any variable w and any
expression X, w has a free occurrence in X iff there exists a finite
sequence of expressions such that X is a member of the sequence,
and for any member Y of the sequence, either Y is an atomic formula
and w is part of y , Y is the negation of some earlier member of the
sequence, Y = YI D F or Y = F D Y\ for some earlier member
Y\ of the sequence and some formula F (not necessarily a member
of the sequence), or Y is the universal quantification of some earlier
member of the sequence with respect to some variable distinct from
w.}

Exercise 2. Using Exercise 1, show that:

1. The set of Godel numbers of sentences is arithmetic;
2. The set of Godel numbers of the provable sentences of P.E.

is arithmetic. [It is more usual to work with this set rather
than the set of Godel numbers of the provable formulas. But
we wanted our first incompleteness proof to be as simple as
possible.]

Exercise 3. Given any finite sequence (GI, 61), (02, 62)5 • • • )(on }&n)
of ordered pairs of numbers in KU, we assign the sequence number
SSa-[SbiS6 . . .86an8bn6S. We let Seq2(:e) be the condition that x is
the sequence number of a sequence of ordered pairs of numbers of
K\\. We let ( x , y ) 6 z be the condition — z is the sequence number
of a sequence of ordered pairs of numbers in KU and (x,y) is a
member of the sequence. We let (a?i,yi) -< (x2, 3/2) be the relation—
z is the sequence number of a sequence in which (x\ , yi) occurs before
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(^2)2/2)- Show that these three conditions are Arithmetic. [This is
important for the next exercise.]

Exercise 4. For any term or formula E and any variable w and any
term t , let Ef (sometimes written Ew(t~)~) be the result of substituting
t for all free occurrences of w in E. Note that the following conditions
hold.

1. If E is a numeral or a variable distinct from w, then E™ = E,
but if E = w, then E™ = t (in other words w™ = t)

2. If E is a term r + s, r • s, r E s or r', then Ef is, respectively,
r? + s?, r j" .ay, rf E aj" or r f .

3. If -E is an atomic formula r = s or r < s, then .E™ is, respec-
tively, rf = af or rf < sj".

4. If -E is a formula F D G or ~ -F, then J5J" is, respectively,
F? D Gf or ~ f^.

5. If £ is a formula VvF where t; is a variable distinct from w,
then E? = VvF?1. But if E is VwF, then JSJ" = E.

Now let Sub(-E,w,i, -F) be the relation UE is a term or formula,
w is a variable, t is a term and F — E™" Let sub^i,:^?3^?3^) be
the relation (between natural numbers): Su1o(EXl,EX3,EX3,EXt').

(a) Using facts (l)-(5) above, Sub(E\,w, i, E%) holds iff there ex-
ists a finite sequence of ordered pairs of expressions such that
(EI,E%) is a member of the sequence, and for any member
(Xi,X?) of the sequence, either - or there exist earlier mem-
bers (Yi, Y"2) and (Zi, Z2) such that - . [Fill in the two blanks
correctly.]

(b) Using (a) and Exercise 3, show that this relation is Arithmetic:
, 2:3,2:4).

Exercise 5. For any variables w and w\ and any formula F, w is
said to be bound by w\ in F if there is a formula G such that w has
at least one free occurrence in G and Mw\G is part of F. A term t
is said to be substitutable for a variable to in a formula F if w is not
bound in F by any variable w\ that occurs in t. Let M(x,y,z) be
the relation UEX is substitutable for Ey in Ez

n and show that this
relation is Arithmetic.

Exercise 6. Let P.E.' be the axiom system P.E. with the axiom
schemes of Group II replaced by the axiom schemes of the following
group — call this Group II':
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1,4 : Same as L4

LS' : VwF D F™, provided t is substitutable for w in F.
Le' : (a) Vi = vi

(b) vi = vi D (v3 = v4D (vi + v3 = v2 + v4))
(c) vi - v2 D (v3 = v4 D (vi -v3 = v2- v4))
(d) v-i — v2 D (v3 = v4 D (vi E z>3 — v% E v4))
(e) v\ = v-z D t>i' = ^2'
(f) vx = v2 D (v3 = v4D (vi = v3 D v-2 = v4))
(g) vi — v2 D (v3 = v4 D (vi < v3 D t;2 < ^4)

We note that axiom scheme L$' has infinitely many axioms (w is
any variable, F, FI and Fy are any formulas).

The set of provable formulas of P.E.' is the same as the set of
provable formulas of P.E. (this follows by the Montague-Kalish result
[1965] that the Group I or Group II-axiomatization of first-order
logic is equivalent to the Group I or Group Il'-axiomatization). But
a proof in P.E. is not the same thing as a proof in P.E.'. We let
Pf '(#) be the condition—a; is the Godel number of a proof in P.E.'.

Using Exercises 4 and 5, show that the set of Godel numbers of
the axioms of L$ is Arithmetic. Then it is easy to show that the
condition Pf'(a;) is Arithmetic, and hence that P.E.' is incomplete.



Chapter IV

Arithmetic Without the Exponential

/. The Incompleteness of P.A.

§1. By an arithmetic term or formula, we mean a term or formula in
which the exponential symbol E does not appear, and by an arith-
metic relation (or set), we mean a relation (set) expressible by an
arithmetic formula. By the axiom system P.A. (Peano Arithmetic),
we mean the system P.E. with axiom schemes NIQ and NU deleted,
and in the remaining axiom schemes, terms and formulas are under-
stood to be arithmetic terms and formulas. The system P.A. is the
more usual object of modern study (indeed, the system P.E. is rarely
considered in the literature). We chose to give the incompleteness
proof for P.E. first since it is the simpler. In this chapter, we will
prove the incompleteness of P.A. and establish several other results
that will be needed in later chapters.

The incompleteness of P.A. will easily follow from the incomplete-
ness of P.E., once we show that the relation xy = z is not only Arith-
metic but arithmetic (definable from plus and times alone). We will
first have to show that certain other relations are arithmetic, and
as we are at it, we will show stronger results about these relations
that will be needed, not for the incompleteness proof of this chapter,
but for several chapters that follow—we will sooner or later need to
show that certain key relations are not only arithmetic, but belong
to a much narrower class of relations, the Si-relations, which we
will shortly define. These relations are the same as those known as
recursively enumerable. Before defining the Si-relations, we turn to
a still narrower class, the S0-relations, that will play a key role in
our later development of recursive function theory.

40
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§2. We now define the classes of So-formulas and So-relations and
then the Si-formulas and relations.

By an atomic S0-formula, we shall mean a formula of one of the
four forms c\ -\- c^ — 03, c\ • c-i = 03, c\ = c^ or c\ < c%, where each
of ci, 02 or Cs is either a variable or a numeral (but some may be
variables and others numerals).

We now define the class of So-formulas by the following inductive
scheme.

1. Every atomic So-formula is SQ.
2. If F and G are So, then so are ~ F and F 3 G (and hence, so

are F A G, F V G and F = G).
3. For any So-formula F, any variable t;,- and every c which is

either a numeral or a variable distinct from t;,-, the expression
Vv,-(w,- < c D -F) is a So-formula.

We recall that (Vv,- < c)F is an abbreviation for W;(vt- < c D F),
and so if F is So, then so is (Vv, < c)F (if c is any numeral or
variable distinct from Vi).

We are also using (3t;t- < c)F to abbreviate ~(Vv» < c)~.F. Now,
if F is S0, then so is ~F (by (2)). Hence so is (Vwt- < c)~ F (by (3),
assuming c 7^ t7t-), and ~ (W; < c) ~ F is SQ—i.e., (3vj < c)F. [We
note that (3vt- < c)F is equivalent to 3vt-(v; < c A FJ],

The quantifiers (Vu; < c) and (3vj < c) are sometimes called
bounded quantifiers. Thus in a So-formula, all quantifiers are bounded.

A relation is called So iff it is expressible by a So-formula. So-
relations are also called constructive arithmetic relations.

Discussion. Let us informally observe that given any So-sentence
(by which we mean a So-formula with no free variables), we can
effectively decide whether it is true or false. This is certainly obvious
for atomic So-sentences (obvious, that is, to the reader who knows
how to add and multiply). Also, given any sentences X and Y, if
we know how to determine the truth values of X and Y, we can
obviously determine the truth values of ~ X and of X D Y. Now
let us consider the quantifiers. Suppose we have a formula -F(u,-)
such that for every particular n, we can determine whether F(n) is
true or false. Can we then determine the truth value of the sentence
3viF(vi)t Not necessarily; if it is true, we can sooner or later know
it by systematically examining the sentences .F(O), ^(1), -^(2), ...,
but if it is not true,^mr search will be endless. Now, let us consider
a sentence (3^j < k)F(uj), where k is any numeral—specifically,
let us consider the sentence (3v\ < b}F(v\). Can we determine
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whether this sentence is true or false? Why certainly; we need merely
test the sentences F(0), F(T), F(2), F(3), F(4) and JF1(5). Similar
remarks apply to the universal quantifier. We have no effective test
for VviF(vi) (if it is false, we will sooner or later know it, but if it is
true, our search will be endless). However, for any number k, we have
an effective test for the truth value of the sentence (Vt>i < k)F(v{)
(still assuming that for each n, we have an effective test for -F(n)).
And so we see that there is an effective test to decide which SQ-
sentences are true and which ones are false.

Si-Relations. By a Si-formula, we mean a formula of the form
3vn+iF(vi,. ..,vn, vn+i), where F(VI,. ..,»„, vn+i) is a S0-formula.
We define a relation (or set) to be Si if and only if it is expressible
by a Si-formula. Thus, R(XI, ... ,xn) is a Si-relation iff there is a
So-relation 5(a;i,.. .,xn,y) such that for all xi,...,xn, the equiv-
alence R ( X I , . . . ,a;n) <-> 3yS(xi,... ,xn, y) holds. We note that a
Si-formula begins with one unbounded existential quantifier. All
the other quantifiers in it are bounded.

S-Formulas. We inductively define the class of S-formulas by the
following rules:

1. Every So-formula is a S-formula.
2. If F is a S-formula, then for any variable Vj, the expression

3v{F is a S-formula.
3. If F is a S-formula, then for any distinct variables «,• and Vj,

the formulas (3t>s- < Vj)F and (Vv,- < Vj)F are S-formulas and
for any numeral n, the formulas (3t?,- < n~)F and (W,- < n}F
are S-formulas.

4. For any S-formulas F and G, the formulas F V G and F A G
are S-formulas. If F is a So-formula and G is a S-formula, the
formula F D G is a S-formula.

A S-formula may contain any number of unbounded existential
quantifiers, but all universal quantifiers must be bounded. We will
call a relation (or set) a S-relation if it is expressed by some S-
formula. In Part II of this chapter, we will show that the S-relations
are the same as the Si-relations (both are the same as those known
as recursively enumerable).

We now aim to show that the exponential relation xy = z is not
only arithmetic but is Si. To this end, we first build up a useful
armory of So-relations.

We immediately note that the relation x < y is S0, since x < y
iff x < y A x ^ y. Also for any S0-relation R(x, j/ ,zi,. . . ,zn), the
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relation (Vx < y)R(x,y, zi,.. . ,zn) is So, since it can be written
(V* < y)(x ^ y D R(x, y, zi , . . . , zn}}.

§3. Concatenation to a Prime Base. We already know
that for any b > 2, concatenation to the base b is Arithmetic. The
exponential function came into the definition of x *t y = z precisely
at the point where we defined Powf,(x) (x is a power of 6). And now
we use a clever idea due to John Myhill. For any prime number p,
we can define Powp(x) without recourse to the exponential; a; is a
power of p if and only if every proper divisor of x is divisible by pi
Using this idea, we will easily show that for a prime number p, the
relation x *p y = z is arithmetic — in fact, even SQ.

Lemma 1. For every prime number p, the following conditions are
S0.

1. x div y — x divides y.
2. PoWp(x) — x is a power of p.
3. y = pfp(x) — y is the smallest positive power of p greater than x.

Proof.

1. x div y <-» (3z < y)(x • z = y).
2. Powp(x) <-> (Vz < x) ((z div x A z ^ 1) D p div z).
3. y = p^x) <-» (Powp(y) l\y>x/\y>l}f\

(Vz < y) ~ (Powp(z) A z > x A z > 1).

Proposition A. For any prime p, the relation x *p y = z is So.

Proof.

The condition wi = pfp^ is So by the preceding lemma.

Proposition B. For each prime number p, the following relations
are all SQ.

1. The relations xBpy, xEpy and xPpy (x begins j/, x ends y and
x is part of y, in base p notation).

2. For each ra > 2, the relation xi *p • • • *p «„ = y.
3. For each n > 2, the relation XI*P • •• *p xnPpy.
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Proof.

1. We recall from Chapter 3 that xBpy is equivalent to

Clearly each of these conditions is SQ.
2. The proof is by induction on n > 2. We already know that

the relation a?i *p x2 = y is SQ. Now suppose n > 2 is such
that the relation x^ *p • • • *p xn = y is SQ. Then the relation
x\ *p • • • *p a;n *P xn+i = y is also S0, for it can be written as

3. The relation x\ *p • • • *p xnPpy can be written as

Since 13 is a prime number, then all the parts of Propositions A
and B hold for p = 13. From this it easily follows that the sets PE
and RE of the last chapter are not only Arithmetic but arithmetic for
the following reasons. Since the sets and relations of Propositions A
and B are SQ (for p = 13), then, of course, they are arithmetic. Then
all the conditions (sets and relations) of Propositions 1, 2 and 3 of
the last chapter are arithmetic, since the exponential function was
never used in showing them to be Arithmetic once the conditions
Powis(x) and x *is2/ = % were shown to be Arithmetic. But we now
know that the conditions Powis(x) and x *i3 y = z are arithmetic.
Therefore, all the conditions of Propositions 1, 2 and 3 of the last
chapter are arithmetic.

Indeed, all the conditions of Propositions 1, 2 and 3 of the last
chapter are not only arithmetic, but are in fact S, since the un-
bounded universal quantifier was never used. In particular, the sets
PE and RE are S. The fact that they are S will be crucial for the
next chapter. For this chapter, the only important thing is that they
are arithmetic. _

Since PE is arithmetic, so is PE- However, it is a far cry to con-
clude that the set Pg is arithmetic, and we need this set to get a
Godel sentence for Pg! To pass from the arithmeticity of a set A to
the arithmeticity of ^4* involves using the relation 1331 = y (in order
to get the diagonal function), and, hence, we will have to show that
the relation 13* = y is arithmetic. [This does not follow from the
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mere fact that the set of powers of 13 is arithmetic!]
We know of no simpler method of showing the relation 13* = y

to be arithmetic than of showing the more general fact that the
relation xv — z is arithmetic (even though 13 is a prime number).
[If there is a simpler method, we would love to know about it!] And
so we now turn to the task of showing that the exponential relation
is arithmetic—in fact, we want to prove:

Theorem E. The relation xy — z is EI.

§4. The Finite Set Lemma. Theorem E will easily follow
once we have proved the following lemma.

Lemma K. There is a constructive arithmetic relation K(x,y,z~)
having the following two properties.

1. For any finite sequence (ai, &i), (a?, 62), . . . , (an, bn) of ordered
pairs of natural numbers, there is a number z such that for any
numbers x and y, the relation K(x,y,z) holds if and only if
(x,y) is one of the pairs (01,61),... ,(an,bn).

2. For any numbers x, y and z, if K(x, y, z) holds, then x < z and
y < z.

To prove Lemma K, we use Propositions A and B. These proposi-
tions hold for any prime number p—in particular, for p the number
13. [Actually, any other prime number would serve as well—e.g.,
p = 2—but since we are now used to the prime base 13, we will stick
to it.] To avoid unnecessary circumlocution, until further notice,
we will identify the natural numbers with their base 13 representa-
tions. Thus, e.g., we will say that a number x is part of a number j/,
meaning that the base 13 representation of x is part of the base 13
representation of y.

Now we use a clever idea due to Quine [1946]. By a, frame we shall
mean a number of the form 2t2, where t is a string of 1's. We let
l(a;) be the condition that a; is a string of 1's (in base 13 notation,
of course.) The condition l(x) is So, for

Now let 6 be any finite sequence ((oi,&i),. . .,(an,6n)) of ordered
pairs of numbers, and let / be any frame which is longer than any
frame which is part of any of the numbers ai, bi,..., an, bn. For such
an /, we call the number f f a i f b i f f • • • f f a n f b n f f a sequence num-
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her of 6. [There is no need to assign to 9 a unique sequence number.
If desired, we could, of course, take the least sequence number, but
this is an unncessary technical complication. We note that "sequence
number" has a very different meaning in this chapter than in the last!
If we were interested in assigning sequence numbers to only those 0
such that <xi ,6i , . . . ,a n ,6 n are all in KU, then the obvious thing
to do would be to take the number S6a\6b\66a^b^S • • • SSanSbnS6.
However, for our present purposes, we need to consider sequences of
ordered pairs of any natural numbers whatsoever. The frame / now
plays the role formally played by S.]

We call x a maximal frame of y if x is a frame, x is part of y and
x is as long as any frame that is part of y. Let x mf y be the relation
that x is a maximal frame of y. The relation x mf y is SQ as

Now we can define the crucial So-relation K(x,y,z).

We note that for any sequence 0 of ordered pairs of numbers, if
z is any sequence number of 0, then K(x,y,z) holds if and only if
the ordered pair (x,y) is a member of the sequence 6. It is obvious
from the definition of K(x,y, z) that for any numbers x,y and z, if
K(x,y,z) holds, then x < z and y < z (in fact, x < z and y < z),
and so we have proved Lemma K.

Remarks. An alternative method of proving Lemma K, which does
not use Quine's maximal frames, uses an ingenious idea due to Saul
Kripke. Not only is it the case that for each prime p the relation
x *p y = z is So, but the 4-place relation up is a prime and x *py = z"
(as a relation among p, x, y, z) is easily seen to be SQ. Now, given any
sequence 9 of ordered pairs, take a prime number p such that p — 1
is greater than any of the numbers 01, & i , . . . , an,bn. Let s = p — I.
Then in base p notation, the numbers s, a\,bi, .. .,an and bn are all
single digits! We let q be the number ssa\sbiss • • • ssansbnss. The
number q serves perfectly as a sequence number of 0. [Details of this
can be found in Boolos and Jeffrey [1980], Ch. 14, pp. 162, 163].

§5. Proof of Theorem E. Now that we have Lemma K, the
proof of Theorem E is easy.

We note that xy = z iff there exists a set S of ordered pairs such
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that:

(i)(», *)es.
(2) For every pair (a, 6) in S, either (a, 6) = (0,1) or there is some

pair (c, d) in 5 such that (a, 6) = (c + l,d • x)

We can see this as follows: If xy = z, then we can take 5" to be the
set {(0, 1), (!,#), (2, a:2),... ,(y,xy}}. Conversely, suppose S is any
set of ordered pairs such that (1) and (2) hold. From (2) it follows
that for any pair (a, 6) in S, it must be the case that xa = b (as can
be seen by induction on a). And so by (1), we have xy = z.

It follows from this that xy = z iff there exists a number w such
that K(y,z,w), and for any number a < w and any b < w, if
K(a,b,w), then either a = 0 and 6 = 1, or there are numbers c < a
and d < b such that A'(c, d, w) and a = c + 1 and b = d • x. Thus,
xy — z iff the following condition holds:

A variant of the above proof uses what is known as a Beta-
function. We discuss this in the following section.

Beta-Functions. A function j 3 ( x , y ) is called a Beta-function if for
every finite sequence (ao, 01, . . • , an) of numbers there is a number w
such that /3(w,0) = ao and /3(w,l) = ax, ... ,/?(«;, n) = an.

We call a function /(xi, . . . ,xn) a Eo-function (or a constructive
arithmetic function) if the relation /(xi, . . . ,xn) — y is So.

From Lemma K we easily obtain

Theorem B — The Beta- Function Theorem. There is a construc-
tive arithmetic Beta-function.

Proof. Using the E0-relation K(x,y,z) of Lemma K, define (3(w,i)
to be the smallest number k such that K(i,k,w), if there is such a
number k. Otherwise set /?(«;, i) = 0. The relation f3(w,x) — y is
SQ because it can be expressed as

Now, given any finite sequence (GO, • • • , an), if we let w be a se-
quence number of the sequence ((0,a0),(l,ai),... ,(n,an)), then for
each i < n, K(i,a,i,w) holds, and a,- is the only number m for which
K(i,m,w) holds, and so (3(w,i) = a,-. This concludes the proof.
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Remarks (l). The first /3-function was constructed by Godel [1931].
Its definition requires the result from number theory known as the
Chinese Remainder Theorem. In T.F.S. we introduced a simplified
/3-function (much like the one above) that avoids the Chinese remain-
der theorem. Godel's beta-function belongs to the class of functions
known as primitive recursive, of which the So-functions form a small
subclass. The /3-function constructed in T.F.S. belongs to the still
smaller class called strictly rudimentary functions, which are closely
tied up with the theory of finite automata (cf. T.F.S., Chapter IV
for details).

(2). Using a ^-function, we have the following alternative proof of
Theorem E.

Obviously xy = z iff there exists a finite sequence (ao, ai, . . . , ay~)
(namely (l,a?,a;2, . . . , a;2')) such that ao = 1 and ay = z and for each
i < y and a,-+i = a,- • x. And so xy = z iff

Note. The condition /3(w,n + 1) = /3(w,n) • x is So and can be
written as

Theorem E has the following important corollaries:

Corollary 1. For any arithmetic set A, the set A* is arithmetic. If
A is S, then so is A*.

Proof. Since the relation xv = z is Si, it is certainly S. Hence the
relation 13X — y (as a relation between x and y) is S (in fact, Si).
Hence the diagonal function d(x] is S (we recall that d(x) = y iff
3z(z = 13^ A kz8x3 = y), where k is the Godel number of the expres-
sion "Vvi(t;i ="). And so there is a S-formula D(VI,VZ) expressing
the relation d(x) = y. Then, for any formula A(v\) expressing a
set A, the formula 3vz(D(v-i, v^) A A(v-2)) expresses the set A*. So if
A is arithmetic, then so is A*. If A(v\] happens to be a S-formula,
then so is the formula 3v2Dvi,vz A ̂ ^ 2 .

Corollary 2 — Tarski's Theorem for £,&. The set of Godel num-
bers of the true arithmetic sentences is not arithmetic.

Proof. Let TA be the set of Godel numbers of the true arithmetic sen-
tences. If TA were arithmetic, then TA would be arithmetic. Hence
TA would be arithmetic (by Corollary 1) and we would have the
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same contradiction as in the proof of Tarski's theorem for LE—
namely, there would be an arithmetic formula H(VI) such that for

-—'—' S+£

any n, H(n) would be true «-»• n 6 TA • Hence H[h] would be true
<->• h € TA «-+ H[h] is not true.

Corollary 3. The sets Pg and R*E are S. The set PE is arithmetic.

Proof. We have already proved that the sets PE and .Rj5 are S. Hence
the sets P^ and .ffijj are also £ by Corollary 1.

Since the set PE is S, it is arithmetic. Hence its complement PE
is arithmetic. Therefore, the set PE is arithmetic by Corollary 1.

§6. The Incompleteness of Peano Arithmetic. Since
the set PE is arithmetic, there is an arithmetic formula H(v\) that
expresses PE ; its diagonalization H[h] is then an arithmetic Godel
sentence for PE, and is, thus, true but not provable in P.E. Since
it is not provable in P.E., then it is certainly not provable in P.A.
(whose set £>f axioms is a proper subset of the set of axioms^ of P.E.).
And so H[h] is true but not provable in P.A. Since ~ H[h] is false,
then ~ H [h] is also not provable in P.A., so H[h] is a sentence in the
language CA of P.A. which is neither provable nor refutable in the
axiom system P.A.

Of course, we did not need to use the axiom system P.E. to prove
the incompleteness of P.A. Let PA be the set of Godel numbers of
the formulas provable in P.A. To show that the set PA is arithmetic
(in fact S)-—a fact we will need for subsequent chapters—we need
make only a couple of trivial changes in the proof of Proposition 3
of the last chapter. In item (4) on page 34, Ri(x,y,z) should now
be: Ez is one of the expressions (Ex + Ey), (Ex • Ey) or E'x, so in
the proof of (4), just delete the disjunctive clause z = x exp y. With
this change, tm(x) and fm(x) are then the conditions that Ex is a
term or formula of P.A. rather than P.E. Then in A(x] (item (12)),
delete the disjunctive clauses NIQ(X) and N\\(x). Then A(x) is now
the condition that Ex is an axiom of P.A. With these changes, items
16 and 17—which we now label PA(X) and RA(X)—thus become: Ex

is provable and refutable in P.A.
And so the set PA is S and, hence, the sets PA and PA are

arithmetic. If we now take an arithmetic formula H(v\) expressing
the set PA i its diagonalization H[h] then expresses its own non-
provability in the system P.A. rather than P.E. Either way, we have
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proved

Theorem I. The system P.A. is incomplete.

Exercise 1. Let G be the sentence H[h] which is true but not prov-
able in P.A. (H(vi) is a formula that expresses the set P*). Suppose
we add the sentence G as an axiom to P.A.—call this system P.A.
+ {G}. Since G is a true sentence, the system P.A. + {G} is also a
correct system. Is it complete?

//. More on Si-Relations

For several chapters that follow, we will need to know that every
S-relation (and set) is also Si. This fact follows rather easily from
the following proposition.

Proposition C.

(a) Every S0-relation is also Si.
(b) If R ( X I , . .., xn, y) is Si, then so is the relation

(c) If R I ( X I , . .. ,xn) and RZ(XI,. .. ,xn) are Si, then so are the
relations

and

(d) If R(XI, ... ,xn,y,z) is Si, then so are the relations

and

(e) If R is S0 and 5 is Si, then the relation R 3 S is Si.

Proof.

(a) Suppose the relation R(x\,..., xn) is S0. Let F(VI, ..., vn) be
a So-formula that expresses it. Then the formula
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is a Si-formula, and it expresses the same relation R(XI, . . . , xn]
(vacuous quantification!). So R is Si.

(b) Let us first note that for any relation S(xi,. . . ,#„, j/,.z), the
following two conditions are equivalent:

(1) 3y3zS(xi,...,xn,y,z)
(2) 3w(3y < w)(3z < w)S(xi,. . . ,xn,y,z).

It is obvious that (2) implies (1). Now suppose a>i, . . . ,xn are
numbers such that (1) holds. Then there are numbers y and z
such that S(xi, . . . , xn, y, z) holds. Let w be the maximum of
y and z. Then (3y < w)(3z < w)S(xi, . . . ,xn,y,z) holds for
such a number w, and hence (2) holds.

Suppose now R(XI, . . . , xn,T/) is EI. Then R(x\, . . . ,xn,y) is of
the form 3zS(xi,. . . ,xn,y,z), where 5 is a Eo-relation. Then
the relation 3yR(x\, . . . ,xn,y) is the same as the relation
3y3zS(x\, . . . ,xn,y,z). But as shown above, this is the same
as the relation 3w(3y < w)(3z < w}S(x-± , . . . , £„, y, z), and this
relation is Si because the relation

is a So-relation among xi, . . . ,xn and w.
(c) This statement is equivalent to the statement that for any SQ-

relations 5"i(xi,. . . ,xn,y) and Sz(xi,.. . ,xn,y), the two rela-
tions 3ySi(xi, . . . ,xn,y) V 3yS2(xi, . . . ,xn,y) and the relation
3ySi(xi,...,xn,y)A3ySi(xi,...,xn,y) are both EI. Well, the
first is equivalent to

the second is equivalent to

which is EI by (b).
(d) Suppose R ( X I , . . . ,xn,y, z) is EI. The proof that the relation

(3y < z)R(xi,. . . ,xn, y,z) is Si is pretty obvious. We know
that the relation y < z is SQ. Hence the set K of all n + 2-
tuples (ari, . . . , xn, y, z) such that y < z is So (it is expressed by
the So-formula v\ = vi A • • • A vn = vn A t>n+i < ^+2)- Hence
the relation K(x\,.. . ,xn,y,z) is Si (by (a)). Therefore, the
relation K ( X I , . . .,xn,y,z) A R(xi,...,xn,y,z) is Sx (by (c)),
but this is simply the relation y < z A R(XI, . . . , xn, y, z). Then
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by (b), the relation

(as a relation between x\,..., xn, z) is Si , but this is the relation
(3j/ < z)R(xi,...,xn,y,z).

The proof that the relation (Vt/ < z)R(xi,... ,a;n,j/, z) is Si is
more subtle and more interesting! Since R is Si, there is a SQ-
relation 5(x1?..., xn, y, z, w) such that for all *i,..., xn, y and
z, R(xi,...,xn,y,z) holds iff 3wS(xi,...,xn,y,z,w). Then
(Vy < z)R(xi,..., xn, y, z} is the condition

Now suppose «!,..., xn and z are numbers such that

holds. Then for every y < z, there is some number wy such
that 5(£i,... ,xn, y,wy} holds. Let v be the greatest of the
numbers WQ, w^,..., wz. Then WQ, ... ,wz are all < w, and so
for every y < z, there is some w < v (namely Wy) such that
S(xi,. ..,xn,y,z, w). Thus (for this v), the condition

holds and, therefore, the condition

holds. Conversely, this condition obviously implies the condi-
tion

which is the condition

(e) Suppose R is SQ and 5" is Sj. Then R is also SQ. Hence R is
Si by (a). Then R V 5 is E! by (c). But E V 51 is the relation
# D S .

For any formula F(v^ , . . . , Vik ) (H < 12 < . . . < ik) and any
n > U) by F^n\ we shall mean the set of all n-tuples (aj , . . . ,an)
such that -F(a,j , . . . , «jfc ) is a true sentence. (For example, if F
is the formula ^3 + ^1 = ^5, then F^ is the set of all sextuples
(ai,a2)«35«4,«5,a6) such that aa+ai = ag.) If JF1 is a regular formula
F(VI, . . . , vn), then, of course, F^ is simply the relation expressed
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by F(vi,...,vn).
By (a)-(e) of Proposition C, it follows by a straightforward in-

duction argument on degrees of formulas that for any S-formula
F(vii:.. .,Vik) and any n > ik, the relation (or set) F^ is Si. It
then follows that any regular S-formula F(v\,..., vn) expresses a
Si-relation, and so we have:

Proposition Ci- Every S-relation is Si.

From Proposition Ci and the corollaries of Theorem E, we have:

Corollary 1. If A is Si, then so is A* .

Corollary 2. The sets P*A and R*A are Si.

Appendix
A set or relation is called recursive if it and its complement are

both Si. [The complement of a relation R(XI , . . . , xn) is the relation
~ R(XI, ... ,a;n).] A function /(#i,... ,xn) is called recursive if the
relation /(»i, ...,xn) = yis recursive.

Many of the sets and relations which were shown in the last chap-
ter to be Arithmetic, and which were shown in this chapter to be
Si, are in fact recursive. Indeed, the relations (1)-(15) of Proposi-
tion 3, Ch. 3 (pp. 33-34) are all recursive. The standard proof of
this uses a device known as "course of values recursion", but we have
the following alternative method which is much simpler.

We define ir(x) to be 13^ +x+l). The function ir(x) is recursive
(Ex. 2 below). Its significance is given by the following theorem.

Theorem D. For any n and any k < n and any sequence (a j , . . ,
of numbers of KU all of which are < n, its sequence number

is < ?r(n).

Proof. Let x be this number. Then x < y, where 

(i.e. 6 * n followed by itself n times followed again by 6). We show
that y < ir(n).

For any number z, we let L(z) be the length of z (in base 13
notation). Then L(y) — n • L(n) + n + I (since 6 is of length 1).
Also L(n) < n, and so L(y) < n2 + n + 1. Also y < l%L(y\ and so
y < 13"2+n+1.
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The relevance of Theorem D to the problem at hand is revealed
in the exercises that follow.

Exercise 1. Show that for any function /(cci, . . . , xn), if the relation
f(xi,...,Xn) = y is Si, then so is the relation f(x\,. . . ,xn) ^ y
(and, thus, any Si-function is recursive). [Hint: If f(xi, . . . ,xn) is
unequal to y, then it is equal to some number other than y.]

Exercise 2. Prove that the function 7r(x) is recursive.

Exercise 3. Show that for any recursive relation R(x,y) and any
recursive function /(#), the relation (3t/ < f ( x ) ) R ( x , y ) is recursive.

Exercise 4. The condition Seqt(a;) (x is the Godel number of a for-
mation sequence for terms) is obviously recursive (it is even So). The
condition tm(a;) (Ex is a term) has been shown to be Si. [We recall
that tm(a;) «-»• 3y(Seqt(2/) A a; 6 y).} Now show that the condition
tm(a;) is recursive by showing that

[Hint: The definition of Seqt(x) involves the relation Ri(x,y, z) (mir-
roring the formation relation for terms) which has the property that
if R\(x,y,z) holds, then z must be greater than both x and y.
Therefore, Ex is a term iff it is a member of a formation sequence
(Eai, . . . ,-Eafc) without repetitions and such that each ai is < x (and
hence k < x, since there are no repetitions), and' so by Theorem A,
the sequence number of (01, . . . , a^) is < x.]

Exercise 5. Similarly, show that in item (11) of Prop. 3, Ch. 3, if
we replace "3y" by "(3y < ?r(a;))", the equivalence still holds and,
therefore, the set of Godel numbers of formulas is recursive.

Exercise 6. Now show that all the items (1)-(15) of Prop. 3, Ch. 3
are recursive.

Exercise 7. Consider now the relation Fr(a;,j/) (cf. Exercise 1 of
Ch. 3). Using the function TT(X), show that this relation is recursive.
Then show that the set of Godel numbers of sentences is recursive.

Exercise 8.
(1) By the (universal) closure of a formula

we mean the sentence Mv^Mv^ • • • Vv,-n ̂ (1;^, Vi2, . . . ,Vin). [If F
has no free variables, then F is its own closure.] Show that the
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following relation between x and y is recursive. Ex is a formula
and Ey is its closure.

(2) Using (1), show that for any system S, the set of Godel numbers
of the provable formulas is r.e. iff the set of Godel numbers of
the provable sentences is r.e., and the one set is recursive iff the
other set is recursive.



Chapter V

Godel's Proof Based on aj-Consistency

The proof that we have just given of the incompleteness of Peano
Arithmetic was based on the underlying assumption that Peano
Arithmetic is correct—i.e., that every sentence provable in P.A. is
a true sentence. Godel's original incompleteness proof involved a
much weaker assumption—that of ^-consistency to which we now
turn.

We consider an arbitrary axiom system S whose formulas are those
of Peano Arithmetic, whose axioms include all those of Groups I and
II (or alternatively, any set of axioms for first-order logic with iden-
tity such that all logically valid formulas are provable from them),
and whose inference rules are modus ponens and generalization. (It
is also possible to axiomatize first-order logic in such a way that
modus ponens is the only inference rule—cf. Quine [1940].) In place
of the axioms of Groups III and IV, however, we can take a com-
pletely arbitrary set of axioms. Such a system S is an example of
what is termed a first-order theory, and we will consider several such
theories other than Peano Arithmetic. (For the more general notion
of a first-order theory, the key difference is that we do not necessar-
ily start with + and X as the undefined function symbols, nor do
we necessarily take < as the undefined predicate symbol. Arbitrary
function symbols and predicate symbols can be taken, however, as
the undefined function and predicate symbols—cf. Tarski [1953] for
details. However, the only theories (or "systems", as we will call
them) that we will have occasion to consider are those whose formu-
las are those of P.A.)

<S is called simply consistent (or just "consistent" for short) if
no sentence is both provable and refutable in S. Now, S is called
u>-inconsistent if there is a formula F(w) in one free variable w,
such that the sentence 3wF(w) is provable, yet all the sentences

56
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-F(O), F(T),..., -F(n),... are refutable. Of course, such a system can-
not be correct because if 3wF(w) is true, then for at least one n,
the sentence F(n} must be true, and so a correct system cannot be
^-inconsistent. It is possible, however, for an w-inconsistent system
to be simply consistent, as we will see. A system S is called in-
consistent if it is not ^-inconsistent—in other words, if whenever a
sentence 3wF(w) is provable in S, then for at least one number n,
the sentence F(n) is not refutable in S.

If S is (simply) inconsistent, then every sentence is provable in
S (since S contains all axioms and inference rules of prepositional
logic), and hence it must be u-'mconsistent. Stated otherwise, if S is
w-consistent, then it is also simply consistent.

A system S is called recursively axiomatizable or just "axiomatiz-
able" for short if the set P of Godel numbers of the provable formulas
of S is EI . Axiomatizable systems are also called formal systems or
r.e. systems ("r.e." for recursively enumerable). They may also be
called Y,i-systems. We proved in the last chapter that the system
P.A. is axiomatizable. An example of a system that is not axioma-
tizable is the system A/" (the complete theory of arithmetic) whose
non-logical axioms are all correct arithmetic formulas. (The prov-
able formulas of A/" are nothing more than the axioms of A/" since
any logical consequence of correct formulas is again a correct for-
mula.) The set of Godel numbers of the provable formulas of A/" is
not even arithmetic, let alone Si, so the system A/" is certainly not
axiomatizable.

Given two systems S and Si, we call Si a subsystem of S or S
an extension of Si if all provable formulas of Si are also provable in
S. As an example, the system P.A. is a subsystem of the complete
system A/" (since P.A. is correct). We will later on consider in turn
some significant subsystems of P.A.

As we have remarked, every correct system is automatically u>-
consistent. Hence the assumption that the system P.A. is correct
is stronger than the assumption that P.A. is w-consistent. We have
proved the incompleteness of P.A. under the assumption that P.A.
is correct. A major purpose of this chapter is to prove the following:

Theorem G.1. If Peano Arithmetic is (^-consistent, then it is in-
complete.

We will establish Theorem G as a consequence of the following
two theorems.

1 Godel's original version of the Incompleteness Theorem for Peano Arithmetic
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Theorem A.2 If S is any axiomatizable u>-consistent system in
which all true TiQ-sentences are provable, then S must be incomplete.

Theorem B. AH true So-seniences are provable in P.A.

Since we have already proved that P.A. is axiomatizable, Theo-
rem G will follow as soon as we have proved Theorem A and Theo-
rem B.

Discussion. The proof of Theorem G amounts to far more than just
"another proof" that P.A. is incomplete. Out of the proof will emerge
much valuable information about P.A. and some of its subsystems
which will be crucial for the rest of this volume.

In part I of this chapter, we will derive Theorem A as a conse-
quence of some still more abstract incompleteness theorems—theorems
that apply to non-axiomatizable systems as well as to axiomatizable
systems. Part II will be devoted to the proof of Theorem B—in fact
to the proof of some significantly stronger results.

/. Some Abstract Incompleteness Theorems

§1. A Basic Incompleteness Theorem. A formula F(VI)
(with vi as the only free variable) will be said to represent a number
set A in <5 if A consists of those and only those numbers n such
that the sentence F(n) is provable in S. More generally, a formula
F(VI, ..., Vk) represents the set of all fc-tuples (n j , . . . , n/t) such that
F(ni,..., raj.) is provable in <S.

Consider now the case where S is the system P.A. A formula F(v\)
expresses the set of all n such that F(n) is a true sentence, whereas
F(VJ) represents (in P.A.), the set of all n such that F(n) is provable
in P.A. Since P.A. is correct, the set represented by F(v\) is a subset
of the set expressed by F(v\), but the difference between these two
sets can be quite drastic. For example, let G be a true sentence which
is not provable in P.A., and let F(v\) be the formula G A (v\ = v\).
The set expressed by F(v\) is the set of all natural numbers, but
the set represented by F(VI) in P.A. is only the empty set! (Why?)
In general, the expressible sets are the arithmetic sets, whereas the
representable sets of P.A. will turn out to be only the Si-sets (as we

2 A Generalization of Godel's Theorem
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will see). We note that the expressible sets are those representable
in the complete theory JV (and, thus, expressibility is but a special
case of representablity — a fact noted by Mostowski [1961]).

We now consider an arbitrary system S (not necessarily axiom-
atizable). We let P be the set of Godel numbers of the provable
formulas of S and R be the set of Godel numbers of the refutable
formulas of S. As with the special case of P.A., we let P* be the set
of all n such that J5n[ra] is provable in <S, and we let R* be the set of
all n such that jE?n[n] is refutable in S. As with the special case of
P.A., the sets P* and R* will play the principal roles in the drama
about to unfold.

Theorem 1. Suppose S is simply consistent and H(v\) is a formula
whose negation represents the set P* in S. Then the sentence H(h)
is neither provable nor refutable in S where h is the Godel number
of the formula H(VI).

Before proving Theorem 1, we shall explicitly note some basic
facts. For any formula H(VI) and any number n, the sentence
H(n) = H[n] (unabbreviated: H(n) = Vt>i(vi = n D H(VI))) is
not only arithmetically true, but is a theorem of first-order logic
with identity. Hence it is actually provable in S (since all axioms
of Groups I and II are axioms of S). Therefore, H(n) is provable
in <S iff H\n] is provable in S, and H(n) is refutable in S iff H[n] is
refutable in S. In particular, if h is the Godel number of H(v\), then
H(h) is provable in S iff H[h] is provable in S iff h 6 P*. Similarly,
H(h) is refutable in S iff h £ R*. And so we have:

Lemma 1. For any formula H(VI) with Godel number h:

1. H(h) is provable in S «-* h £ P*.
2. H(h) is refutable in S *->• h € R*.

Proof of Theorem 1. Assume hypothesis. Since the negation of
H(VI) represents P*, then for any number n, the sentence H(n) is
refutable in S iff n 6 P*. In particular, H(h] is refutable in S iff
h G P*- But it is also the case that H (h) is provable in <S iff h € P*
(by Lemma 1). Therefore, H(h) is provable in S iff H(h) is refutable
in S. This means that H(h) is either both provable and refutable in
S or neither. By the assumption of simple consistency, H (h) is not
both provable and refutable in S; hence it is neither.

Question. Instead of taking a formula whose negation represents
P*, what about taking a formula that represents P*? This strategy
is quite useless! Why? [The answer will emerge from Exercise 2
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below.]

Corollary. If P* is representable in S and S is consistent, then S
is incomplete.

Proof 1. Suppose S is consistent and F(VI ) is a formula that rep-
resents P*. Then the formula ~~ F(VI) also represents P* (why?).
Hence the formula H(VI)—viz. ~ jP(^i)—is a formula whose nega-
tion represents P*, and so the hypothesis of Theorem 1 is fulfilled.

Proof 2. The proof above, though, following from Theorem 1 and
avoiding a separate diagonal argument, is unnecessarily roundabout
(and also is not applicable to systems based on intuitionistic logic in
which we don't have the double negation principle). The following
argument is more direct.

Suppose H(VI) represents P*. Let k be the Godel number of the
formula ~ H(v\). Then (assuming S is consistent) the sentence H(k)
is undecidable in S. We leave the proof of this to the reader.

Exercise 1. Prove that the sentence H(k) above is undecidable in
S (if S is consistent).

Exercise 2. Prove that it is impossible that the set P* is repre-
sentable in «S (regardless of whether S is consistent or not). (This
answers the question following the proof of Theorem 1.)

Exercise 3. Although P* is not representable in «5, it might happen
that it is representable in some consistent extension S' of S. Show
that if it is, then S must be incomplete. How does this relate to any
theorems previously proved?

A Dual of Theorem 1. In T.F.S. we proved the following theo-
rem—a "dual" of Theorem 1.

Theorem 1°. If the set R* is representable in S and S is simply
consistent, then S is incomplete.

Proof. Suppose S is consistent and H(v\) represents R* in S. Again
let h be the ^Godel number of H(v\). Then H(h) is provable <-»•
h € R* «-* H(h) is refutable (by Lemma 1). The rest of the argument
is the same as that of Theorem 1.

Theorem 1 (or alternatively Thm. 1°) provides a path to the proof
of Theorem A (and hence to Theorem G). In the next section we will
show that if the hypothesis of Theorem A holds, then the sets P*
and R* are both representable in S.
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Remark. Theorems 1° and 1 are respectively special cases of Exer-
cises 2 and 4 of Chapter I. Can the reader see why?

Exercise 4. Suppose S is a subsystem of J\f (i.e., all sentences prov-
able in S are true). Let H(v\) be a formula in v\ and h be its Godel
number.

1. Suppose the negation of H(v\) represents and expresses the
set P*. We know that the sentence H(h) is undecidable in S
(S is automatically consistent since it is a subsystem of AT).
Nevertheless, H(h) is either true or false. Which is it?

2. Suppose H(v\) represents and expresses R*. Is the sentence
H(H) true or false?

§2. The w-Consistency Lemma. Now we will see how in-
consistency enters the picture.

We shall say that a formula F(VI,VZ) enumerates a set A in S if
for every number n, the following two conditions hold:

1. If n e A, then there is at least one number m such that the
sentence F(n,m) is provable in S.

2. If re ^ A, then for every number m, the sentence F(n,m) is
refutable in S.

We say that A is enumerable in S iff there is some formula F(VI , v%)
that enumerates A in S.

Lemma w—The ^-consistency lemma. If S is w-consistent,
then every set enumerable in S is representable in S. More specifi-
cally, suppose S is u-consistent and that F(VI,VZ) is a formula that
enumerates A in S. Then the formula 3u2^?(^i>^2) represents A in
S.

Proof. Assume hypothesis.

1. Suppose n € A. Then for some m, the sentence jP(n,m) is
provable in S. Hence the sentence 3v2F(n, v^) is provable in S.

2. Conversely, suppose 3v%F(n,v2) is provable in S. If n is not
in A, then all the sentences F(n,0),F(n, 1) , . . . ,F(n,m), . . . ,
would be refutable in 5, which would mean that S is ̂ -inconsistent
(since 3viF(n, v^} is provable in S}. So if S is a>-consistent, then
n must be in A.

By (1) and (2), the formula 3t;2F(VI, v^) represents A in S.
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From Theorem 1, Cor., and Theorem 1° and the above lemma, we
have:

Theorem 2. If either P* or R* is enumerable in S and S is in-
consistent, then S is incomplete.

Exercise 5. Prove that if all true Eo-sentences are provable in S
and S is w-consistent, then all Si-sets are representable in <S.

Exercise 6. Suppose JP(t?i, v^) is a formula that represents in S the
same relation that it expresses and that for all numbers n and m,
the sentence JP(n,m) is either provable or refutable in S. Prove that
if S is w-consistent, then the formula 3^2 ̂ (^1,^2) represents in S
the same set that it expresses.

A Sharpening of Theorem 2. Following Godel, we now prove a
significantly sharper form of Theorem 2. Suppose S is w-consistent
and that the set P* is enumerable in S. Let A(VI,VI) be a formula
that enumerates P* in S. Then the formula 3v2A(vi,v^) represents
P* in <S (by the w- consistency lemma). The formula ^viA(v\,v-2) in
unabbreviated notation is ~ V^2 ~ A(VI,V^). Therefore, the formula
V^2 ~ A(VI , ̂ 2) is a formula whose negation represents P* in S. So
by Theorem 1, the sentence Vv^ ~ A(a, v-z) is undecidable in S where
a is the Godel number of the formula Vi?2 ~ A(v\, v?).

Now comes a highly significant point: Let G be the sentence

(this G is Godel's sentence!). We have just seen that if S is w-
consistent, then G is neither provable nor refutable in S. However,
only the simple consistency of S is required to show that G is not
provable in <S! Here is the reason why.

Suppose the sentence W2 ~ A(a, v^) is provable in S. Then a is
in P* (by Lemma 1, taking ^v-^A^i^v^) for H(VI)). Since A(VI,VZ)
enumerates the set P* in »S, there must be a number m such that the
sentence A(a, TO) is provable in S. Hence the sentence 3^2-^(0,^2)
is provable in <S, but this sentence is ~ Vv2 ~ A(a, ̂ 2), which is the
negation of Mv^ ~ A(a, v-z) — i.e., it is the sentence ~ G. So if G is
provable in «S, so is its negation, which means that S is then simply
inconsistent. So if S is simply consistent, then G is not provable in
S. [The assumption of w-consistency is required only to show that
G is not refutable in S.] We have, thus, proved:

Theorem 3. Suppose ^(^1,^2) enumerates P* in S. Let a be the
Godel number of the formula V^ ~ ^(^1^2) o-nd let G be the sen-
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tence Vv2 ~ A(a, v2). Then:

1. If S is simply consistent, then G is not provable in S.
2. If «S is ^-consistent, then it is also the case that G is not

refutable in «S.

Of course, there is also a "dual" result for the set R* whose proof
we leave to the reader:

Theorem 3°. Suppose S(vi,v2) ** a formula that enumerates R* in
S, b is the Godel number of the formula 3v2B(vi,v2) and S is the
sentence \/v2 ~ B(b^v2). Then:

1. If S is simply consistent, then S is not provable in <S.
2. If S is u-consistent, then S is neither provable nor refutable.

Theorem A (which we are aiming at) will follow easily as a con-
sequence of the following theorem, which is now within reach.

Theorem A'. IfS is any axiomatizable oj-consistent system in which
all 'Si-sets are enumerable, then S must be incomplete.

Proof. Assume hypothesis. Since 5 is axiomatizable, the set P is
Si (by definition of axiomatizable). Therefore, the set P* is Si
(we proved in the last chapter that for any Si-set A, the set A* is
also Si). Then by hypothesis, the set P* is enumerable in S. The
conclusion then follows by Theorem 3 (also by Theorem 3°).

Remark. If the set P is Si, then so is the set R (why?) and,
therefore, so is the set R*. Hence the dual argument of Theorem 3°
can also be used to prove Theorem A'.

To establish Theorem A as a consequence of Theorem A', all that
remains is to show that if all true So-sentences are provable in <S, then
all Si-sets are enumerable in S. As we are at it, we will show some-
thing more general. Let us say that a formula F(VI,. .., vn,vn+i)
enumerates a relation R(x\,..., xn) in S if for all numbers k\,..., kn

the following two conditions hold:

1. If R(ki,... ,_&„) holds,_then there is a number k such that the
sentence F(ki,..., kn, k) is provable in <S;

2. If R(ki,.._._,kn) doesn't hold, then for every k, the sentence
F(ki,..., kn, k) is refutable in S.

Lemma 2. If all true Y^o-sentences are provable in S, then all Si-
sets and relations are enumerable in S.
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Proof. Assume hypothesis. Let R ( X I , . . . ,xn) be any Si-relation (or
set, if n = 1). Then there is a So-relation S(xi, . . . ,a;n,y) such that
for all #1, . . .,£„,

Let F ( V I , .. .vn,un+i) be a So-formula that expresses the relation
5(a;i,...,xn, y). We show that F(VI, ..., vn, vn+i} enumerates the
relation R(XI, ..., xn) in S.

1. Suppose R(ki,...,kn) holds. Then for some number fc,

holds. Hence F(ki,... ,kn,k) is a true SQ- sentence, it is prov-
able in S (by hypothesis).

2. Suppose E(&i,... ,&n) doesn't hold. Then for every number k,
it is false that S(ki,..., fcn, A;). Hence for every &, the sentence
F(ki,..., A;n, A;) is false, so the sentence

is true, and being a So-sentence, it is provable in <S, which
means that F(k\,..., &2, k) is refutable in S for every k.

By (1) and (2), the formula JP(ui, . . . , vn, vn+i) enumerates

in S.
Having proved the above lemma and Theorem A', our proof of

Theorem A is complete.
Before we turn to the proof of Theorem B, we wish to pause and

observe the following curious "self-strengthening" of Theorem A.

Theorem A*. IfS is any axiomatizable u-consistent system in which
no false J^Q-sentence is provable, then S is incomplete.

Proof. Assume hypothesis. Now, it either is or isn't the case that
all true So-sentences are provable in S. If it is the case, then S is
incomplete by Theorem A. If it isn't the case, then some true EQ-
sentence X is not provable in S. Then the sentence ~ X is a false
So-sentence and is not provable in S (by hypothesis). Hence X is
undecidable in S.

It is curious that we used Theorem A to prove Theorem A* whose
hypothesis is weaker (weaker, because if S is u;-consistent, then it is
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also simply consistent. Hence if all true So-sentences are provable
in <S, then for any false So-sentence X, it cannot be provable in S
since its negation is a true So-sentence provable in «S). As indicated
in Exercise 7 below, Theorem A* can be proved directly (moreover
in a manner that gives more information than the above proof), and
Theorem A can then be obtained as a corollary.

Exercise 7. Suppose S is axiomatizable and A(v\, v-z) is a So-formu-
la that expresses a So-relation R(x,y) whose domain is P*. Let a
be the Godel number of the formula Vug ~ A(ui,U2), and let G be
the sentence V^2 ~ A(a, v^).

1. Show that if G is provable in «S, then some false S0-sentence is
provable in S.

2. Show that if G is refutable in »5 and S is ^-consistent, then
some true S0-sentence fails to be provable in S.

3. Show that Theorem A* follows from (1) and (2).

Solution of Exercise 7. This result does not appear to be gener-
ally known, and so we will give the solution.

1. Suppose G is provable in 5*. Then a G P*. Hence for some n,
the sentence A(a,n) is true, and for such an n, the sentence
~ A(a,n) is false. But for every n, the sentence ~ A(a,n) is
provable (since Vy ~ A(~a, y) is provable). Hence for at least
one number n, the false So-sentence ~ A(a,n) is provable.

2. Suppose ~ G is provable—i.e. ~ Vy ~ A(a, t/) is provable.
Thus, 3j/A(a, y) is provable. Now suppose 51 is a;-consistent.
Then for at least one number n, the sentence ~ ^(a,^) is not
provable. But since 5 is w-consistent, it is also simply consis-
tent, and so G is not provable. Therefore, a $ P*. So for every
n, the sentence A(a,n) is false, and for every n, the sentence
~ A(a, n) is true. Yet for some n, the sentence ~ A(a,n) is
not provable, and so at least one true So-sentence fails to be
provable.

3. Suppose now all true So-sentences are provable in S. If S is
simply consistent, then no false So-sentence is provable in 5.
Hence by (1), the sentence G is not provable. Since no true
So-sentence fails to be provable in 5, it follows from (2) that if
G is refutable in 5, then 5 must be w-inconsistent.

Since we know that P.A. is axiomatizable, it follows by Theo-
rem A* that if P.A. is complete, then either it is w-inconsistent (in
fact with respect to some Si-formula) or some false So-sentence is
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provable in P.A. After we have proved Theorem B, we will know that
if P.A. is complete, then it is ^-inconsistent.

//. So- Completeness

We now turn to the proof of Theorem B—in fact to the proof of some
stronger results that will be needed in several subsequent chapters.

We will call a system S HQ-complete if all true So-sentences are
provable in S. We now wish to prove the So-completeness not only of
P.A. but also of several subsystems of P.A. which play an important
role in metamathematics.

§3. First we turn to a useful sufficient condition that a system S be
Eo-complete. We shall say that a So-sentence is correctly decidable
in S if it is either true and provable in S or false and refutable in S.

Proposition 1. The following two conditions are jointly sufficient
for S to be So-comp/eie.

C\\ Every atomic "So-sentence is correctly decidable in S.
Ci'. For any T,Q-formula F(w) with w as the only free variable and

for every number n, if the sentences .F(O),..., F(n) are all
provable in S, then so is the sentence (Vw < n)F(w).

Proof. Suppose C\ and C-2 both hold. We show by induction on
degrees of sentences that all So-sentences are correctly decidable in
S (which, of course, implies that all true So-sentences are provable
in 5.)

1. By Ci, all So-sentences of degree 0 are correctly decidable in
S.

2. It is obvious by prepositional logic that for any sentences X
and Y, if X and Y are both correctly decidable in S, then ~ X
and X D Y are correctly decidable in S. We leave the proof of
this to the reader.

3. Any So-sentence 5, which is neither atomic nor of the form
~ X or X D Y, must be of the form (Vw < n)F(w) where
F(w) is a So-formula of lower degree than S and contains w
as the only free variable. So we consider now a S0-sentence
(Vw < n)F(w) such that all So-sentences of lower degree are
correctly decidable in S. We must show that (Vw < n)F(w) is
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also correctly decidable in S.

Suppose the sentence is true. Then each of the sentences

is true. Hence each of them is provable in S (by induction hypoth-
esis) since they are of lower degree than (Vtw < n)F(w). Then by
condition C%, the sentence (Vw < n)F(w) is provable in S.

Suppose the sentence is false. Then for at least one m < n, the
sentence F(m) is false and, hence, refutable in S (again by induction
hypothesis). Since m < n is a true So-sentence, it is provable in S
(by C\). Since m < n and ~ F(m) are both provable, m < n D F(m)
is refutable in S. But

is provable (it is logically valid), and so (Vtt? < n)F(w) is refutable
in 5. This completes the proof.

Proposition 2. The following three conditions are jointly sufficient
for S to be En-complete.

D\: All true atomic Ho-sentences are provable in S.
DI'- For any distinct numbers m and n, the sentence m ^ n is

provable in S.
DS: For any variable w and any number n, the formula

is provable in S.

More specifically, conditions D\ , D^ and DS jointly imply condi-
tion Ci of Proposition 1, and D% implies condition C^.

Proof.

1. Suppose conditions -Di,£>2 and D3 hold. We show that condi-
tion C\ must hold.
By D\, all true atomic So-sentences are provable in <5. It re-
mains to show that all false atomic Eo-sentences are refutable in
S. If the false sentence is of the form m — n, then it is refutable
in <S by D^. Suppose the false sentence is of the form m < n.
Since it is false, then all the sentences m = 0, . . . ,m = n are
false. Hence they are all refutable in S (by D%), and the sen-
tence m = O V . . . V m = n"is refutable. It then follows from D3

(substituting m for w) that m < n is refutable.
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Consider now a false So-sentence of the form, m + "n = k. Since
the sentence is false, m + n = p for some number p ̂  k. Then
m + n = p is provable in 5 (by J9i), and p ^ k is provable in
S (by DI) . Therefore, the formula m + n ^ k is provable in S
(because for any terms t\,ti and £3, the formula

is a valid formula of first order logic with identity and is, hence,
provable in S). Thus, the false sentence m+n = k is refutable in
<S. The proof that every false He-sentence of the form m • n = k
is refutable in S is similar.

2. We now show that condition 62 is derivable from D%. Assume
DS. Suppose F(w) is a S0-formula (with w as the only free
variable), and n is a number such that each of the n sentences
F(0),..., F(n) are all provable in S. Then the open formulas

(being respective logical consequences of jF(0), • • . , F(n)) are all
provable in S. Therefore by propositional logic, the formula

is provable in S and it follows (by propositional logic) that
the formula w < n D F(w) is provable in S. Hence by the
generalization rule, the sentence Vw(w < n D F(w)) is provable
in <S, and this sentence is the sentence (Vto < n)F(w).

§4. Some E0-complete Subsystems of Peano Arithmetic.
We let (Q) be the system P.A. with axiom scheme NI% (the induc-
tion scheme) deleted. Thus, (Q) has only finitely many nonlogical
axioms, to wit, the following nine:

JV"i: v\ = vi'j} vi = v2.
JV2: ~ «i'_= 0.
N3: vi + 0 = «i.
N4: vi +_v2' = (vi + v2)'.
N5: vl • 0 = 0.
N&: vi-v-2_- (vi • vi) + vi.
NT- vi < o = vi - o.
N8: vi < v2' = (vi <v2\Jvi = v2').
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NQ: v\ < v2 V v-i < v-i.

The system (Q) is a variant of one due to Raphael Robinson [1950]
which plays an important role in modern research. We wish to show
that all true So-sentences are not only provable in P.A., but even
provable in (Q). As a matter of fact, axiom Ng is not necessary
for the proof of this result, and so we let (Qo) be the system (Q)
with axiom TVg deleted. Thus, the nonlogical axioms of (Qo) axe
the eight axioms Ni-N&, and we will show that the system (Qo) is
So-complete.

We will show something still stronger. Another axiom system
that has played an important role in the last three decades or so is
the system (K) (also due to Raphael Robinson). This system has
infinitely many non-logical axioms all subsumed under the following
five axiom schemes.

fii: All sentences m + n = k, where m + n = k.
tiz: All sentences ra • n = k, where m x n = k.
fis: All sentences m ^ TI, where m and n are distinct numbers.
^4: All formulas v\ <n = (vi = OV...Vvi = n).
£1$: All formulas v\ < n V n < v\.

Finally, we let (Ro) be the system (R) with axiom scheme fis
deleted. Our plan now is first to show that the system (-Ro) is So-
complete (which is almost immediate from Proposition 2) and then
to show that (Ro) is a subsystem of (Qo) (and also that (_R) is a
subsystem of (Q)).

Proposition 3. The system (Ro) is So-complete.

Proof. For any number n, the sentence n = n is a theorem of first-
order logic with identity. Hence it is provable in (-Ro)- Next, suppose
m < n. Since m = m is provable, so is

Then using fi4, the sentence m < n is provable. Thus, all true So
sentences of the form m < n are provable in (Ro). Then by f l i and
^2? it follows that all true atomic So-sentences are provable in (-Ro).
Hence condition D\ of the hypothesis of Proposition 2 is satisfied for
the system (Ro). Condition _D2 is also satisfied (by ft3). It remains
to verify condition D^. Since for each n, the formula
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is provable in (.Ro) (axiom scheme fi4), so is the sentence

Hence for any variable w, the formula w <n D (w = 0 V .. .V w = n)
is provable in (-Ro)- The result then follows from Proposition 2.

Proposition 4. (-Ro) *'* a subsystem of(Qo).

Proof. Although the induction axioms of NH are not axioms of (Qo),
we are perfectly free to use mathematical induction in our metalan-
guage to prove various things about the system (Qo)- The argu-
ments that follow all use ordinary mathematical induction. The
words "provable" and "refutable" shall now be understood to mean
provable in (Qo) and refutable in (Qo).

1. Using axiom N^ we can see that if n + m = ~q is provable in
(<5o)) then so is n + m + 1 = q + 1. Also, n + 0 = n is provable
(by NS), and so we can successively prove

[We have just used mathematical induction informally.] So all
sentences of fii are provable in (Qo).

2. Using axiom JV6, we see that if n • m — q is provable, then so is

and hence so is n • m+ 1 = q + n (since we have shown that
q + n = q + n is provable). Thus, if n • m = n X m is provable,
then s o i s n - m + l = n x (m + !)• Also n • 0 = 0 is provable
(by JVs), and so we can successively prove

Thus, all sentences of f&2 are provable in (Qo).
3. For axiom scheme fis, we are to show that for any number m

and any positive number n, the sentence TO ̂  n + m (and hence
also the sentence n + m ^ TO) is provable in (Qo). We first note
that for any numbers TO and n, the sentence

is provable (by TVi). Hence

is provable. Therefore, if TO ̂  n is provable, then so is
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Now, for any positive n, the sentence 0 ̂  n is provable (by .A^).
Hence we can successively prove

Thus, all sentences of £^3 are provable in (Qo).
4. For axiom scheme ££4, we show by induction on n that

is provable in (Qo)- Well, v\ < 0 = v\ = 0 is provable (by 7VV).
Now suppose n is such that

is provable. Then, since

is provable (by JVg)? it follows by prepositional logic that

is provable. This completes the induction.

Proposition 5. (R) is a subsystem of(Q).

Proof. Since (jRo) is a subsystem of (<5o)5 it is, of course, a subsys-
tem of (Q). Also all formulas of ^5 are provable in (Q) (by JVg,
substituting n for t^) and so (R) is a subsystem of (Q).

We have now shown that (_R0) is So-complete and that (R0) is a
subsystem of (<2o)> which in turn is a subsystem of (Q), which in
turn is a subsystem of P.A. Also (R0) is a subsystem of (R). We,
thus, have proved the following stronger version of Theorem B.

Theorem B+. The systems (R0),(R),(Q0},(Q} and P.A. are all
%0-complete.

Exercise 8. Let ft4' be the axiom scheme

and let (R') be the system (R) with O4 replaced by the weaker scheme
1)4'. Show that everything provable in (R) is provable in (R').

§5. Having proved Theorems A and B, our proof of Godel's The-
orem for P.A. (Theorem G) is complete. Let us review the broad
outlines of the proof and discuss some related topics.
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We have shown that all true So-sentences are provable in P.A.
and hence that every Si-set is enumerable in P.A. — enumerated, in
fact, by a So-formula F(v\,v<i). The system P.A. is axiomatizable.
Hence the set P is Si, and so the set P* is Si. Therefore, there is
a So-forrrmla A(VI,VI) (which, in fact, can be found by the methods
of the last two chapters) which enumerates P* in P.A. Then by
the w-consistency lemma, if P.A. is (^-consistent, then the formula
Vv2 ~ A(VI, ^2) is a formula whose negation represents P* in P.A.
We let a be the Godel number of this formula, and we let G be
the sentence Vi>2 ~ A(a,v^). Then by Theorem 1, the sentence G
is neither provable nor refutable in P.A. (assuming that P.A. is in-
consistent). It, furthermore, follows by Theorem 3 that only the
simple consistency of P.A. is required to show that G is not provable
in P.A. So if P.A. is simply consistent, then the sentence G is not
provable in P.A. If P.A. is en-consistent (which, of course, it is since
it is correct), then ~ G is not provable in P.A. either.

The sentence G, incidentally, is the true one of the pair (G and
~ G) (assuming that P.A. is consistent). This is a consequence of
the following propositions.

Proposition 6. For any simply consistent system S in which all
true %0-sentences are provable, all provable ̂ -sentences are true. In
particular, if P.A. is simply consistent, then all T,0-sentences prov-
able in P.A. are true.

Proof. Suppose all true So-sentences are provable in S. Suppose
some false So-sentence X were provable in S. Then ~ X is a true
So-sentence and provable in S (by assumption). Hence X and ~ X
are both provable in «S, and S is inconsistent. If S is consistent and
So-complete, all So-sentences provable in S are true.

Proposition 7. Let S be a system in which all true Jlo-sentences are
provable and which contains a "So-formula A(VI,V^) that enumerates
the set P*. Let G be the sentence Vv? ~ A(~a, v^) where a is the Godel
number of^vi ~ A(vi,V2). Then if S is simply consistent, then the
sentence G is true.

Proof. Assume hypothesis. By Theorem 3, the sentence G is not
provable in <S. Therefore, a is not in the set P* (by Lemma 1). Since
A(VI,V^ enumerates P* in S and a ^ P*, for every number n, the
sentence A(a,n) is refutable—i.e., ~ A(a,n) is provable. Then by
Proposition 6, for every n, the sentence ~ A(a, n) is true. Hence, the
universal sentence V^2 ~ A(a, v%) is true—this is the sentence G.
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Corollary. If P.A. is simply consistent, then Godel's sentence G is
true.

We now know that Godel's sentence G for Peano Arithmetic is
true (since we know that P.A. is correct and consistent); we have
informally "demonstrated" the truth of G, but the demonstration is
evidently not formalizable in P.A. (cf. discussion of Godel's Second
Theorem in Ch. 9).

Exercise 9. Assuming P.A. to be consistent, suppose we add the
sentence ~ G as a new axiom and call the resulting system P.A.
+{~ G}. Show that this system is consistent but not w-consistent.
[This provides an example of an ^-inconsistent system, which is nev-
ertheless simply consistent.]

§6. The w-Incompleteness of P.A. Our first proof of the
incompleteness of Peano Arithmetic (which used the Tarski truth
set) was obviously far simpler than the proof of this chapter based
on w-consistency. However, the latter proof (in addition to being
formalizable in P.A., which is necessary for Godel's second theo-
rem) reveals another property of Peano Arithmetic that is even more
startling than that of incompleteness.

The average mathematician, not a specialist in mathematical logic,
has at least heard the statement of Godel's incompleteness theorem,
though he or she may not have gone through the proof. But the
average general mathematician appears not even to have heard of
the still more remarkable fact that there is a formula F(w), with one
free variable w, such that all sentences F(Q), F(l),..., .F(n),... are
provable in P.A., yet the universal sentence \/wF(w) is not provable
in P.A.! This is the condition called ^-incompleteness by Tarski.

To see that this is so, recall that we have shown (under the as-
sumption of simple consistency) that Godel's sentence Vt?2 ~ A(a, v2)
is not provable in P.A. Hence a g P* and all the sentences ~ A(a,0),
~ A(a, 1),..., ~ A(a, n), . . . are provable, yet the universal sentence
V#2 ~ A(n,vz) is not provable in P.A.!

Of course this argument goes through for every consistent axiom-
atizable system in which all true S0-sentences are provable, and so
we have:

Theorem C—The o;-Incompleteness Theorem. If S is any sim-
ply consistent axiomatizable system in which all true Ho-sentences
are provable, then S is u>-incomplete.
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Exercise 10. For any sentence X, let us define P(X) to be F(x),
where x is the Godel number of X.

Under the assumption that P.A. is correct (or even a;-consistent),
the Si-formula P(v\) expresses the set P of Godel numbers of the
provable formulas of P.A. Thus, for any sentence X, the sentence
P(X) is true iff X is provable (in P.A.). We know that for any SQ-
sentence X, if X is true, then X is provable—hence the sentence
X D P(X) is a true sentence. Show that for every So-sentence X,
the sentence X D P(X) is provable in P.A.

Exercise 11. Show that every true Si-sentence is provable in P.A.
[This implies that for every Si-sentence X, the sentence X D P(X)
is true.] It is also the case that for every Si-sentence X, the sentence
X D P(.X} is provable in P.A., but the proof of this is extremely
intricate and goes beyond the scope of this volume. The interested
reader can find a sketch of this proof in Boolos [1979], Ch. 2.

Exercise 12. Prove that it is not the case that for every sentence
X, the sentence X D P(X) is provable in P.A. (assuming P.A. is
correct).



Chapter VI

Rosser Systems

Our first proof of the incompleteness of P.A. was based on the as-
sumption that P.A. is correct. Godel's proof of the last chapter was
based on the metamathematically weaker assumption that P.A. is
^-consistent. Rosser [1936] subsequently showed that P.A. can be
proved incomplete under the still weaker metamathematical assump-
tion that P.A. is simply consistent! Now, Rosser did not show that
the Godel sentence G of the last chapter is undecidable on the weaker
assumption of simple consistency. He constructed another sentence
(a more elaborate one) which he showed undecidable on the basis of
simple consistency.

Our first proof of the incompleteness of P.A. boils down to find-
ing a formula that expresses the set P* (or alternatively one that
expresses R*). Godel's proof, which we gave in the last chapter,
boils down to representing one of the sets P* and R* in P.A. and
the only way known in Godel's time of doing this involved the as-
sumption of ̂ -consistency. [This assumption was not needed to show
that the sets P* and R* are enumerable in P.A.—it was in passing
from the enumerability of these sets to their representability that in-
consistency stepped in.] Now, Rosser did not achieve incompleteness
by representing either of the sets P* and J?*, but rather by represent-
ing some superset of R* disjoint from P*—this can be done under
the weaker assumption of simple consistency—and it also serves to
establish incompleteness, as we will see.

The axiom schemes ^4 and ^5 of the system (R) will play a key
role in this and the next chapter. We shall say that a system $ is
an extension of ^4 and $7$ if all formulas of 1)4 and ^5 are provable
in «S. We will prove the following theorem and its corollaries.

75
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Theorem R. Every simply consistent axiomatizable extension o/J74

and £t$ in which all Hi-sets are enumerable must be incomplete.

Corollary 1. Every simply consistent axiomatizable extension of^4
and O5 in which all true ^-sentences are provable must be incom-
plete.

Corollary 2. Every simply consistent axiomatizable extension of the
system (R) is incomplete.

Corollary 3. The system P.A., if simply consistent, is incomplete.

Remark. Theorem R differs from Theorem A of the last chapter
in that the ^-consistency hypothesis of Theorem A is weakened to
simple consistency. To compensate, the additional assumption of
S being an extension of ^4 and Q5 is required. The two theorems
are apparently of incomparable strength. Similar remarks apply to
Corollary 1 and Theorem A of the last chapter. Corollary 2 is re-
ferred to in Shoenfield [1967] as the Godel-Rosser Incompleteness
Theorem.

§1. Some Abstract Incompleteness Theorems After
Rosser. We showed in the last chapter (Theorem 1°) that if
R* is representable in S and S is consistent, then S is incomplete.
We now show the following stronger theorem.

Theorem 1. If some superset of R* disjoint from P* is representable
in S, then S is incomplete. More specifically, if H(v\) is a formula
which represents in S some superset of R* disjoint from P*, then
the sentence H(h) is undecidable in S, where h is the Godel number
o f H f a ) .

Proof. Let A be the set represented by H(VI) and suppose

and that P* is disjoint from A.
Since H(VI) represents A, then H(h) is provable in S iff h G A

(because for any number n, H(n) is provable in S iff n 6 A). Also
H(h) is provable in S iff h e P* (by Lemma 1 of the last chapter).
Hence h 6 P* iff h € A. But P* is disjoint from A (by hypothesis)
and, therefore, h ^ P* and h ^ A. Since h ^ P*, then H(h) is not
provable in S. Since h ^ A, then h ^ R* (because R* C A) and so
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H(h) is not refutable in S. Therefore, H(h] is undecidable in S.1

Remark. It was not necessary to add to the hypothesis of the above
theorem that S is consistent because the hypothesis implies that P*
is disjoint from R* and, hence, S must be consistent (because if
S were inconsistent, then every formula would be provable, and h
would be in both P" and R").

The above theorem really is stronger than Theorem 1° of the last
chapter because if <S is consistent and if H(v\) represents R* in <S,
then H(v\) certainly represents some superset of R* disjoint from
P*—namely R* itself.

Exercise 1. Show that if some superset of P* disjoint from R* is
representable in «5, then S is incomplete.

Separability in <5. We shall say that a formula F(VI) separates a
set A from a set B in S if for all n 6 A, F(n) is provable in S and
for all n € 5, F(n) is refutable in S.

Lemma 1. If F(v\) separates A from B in S and S is consistent,
then F(VI) represents some superset of A disjoint from B.

Proof. Assume hypothesis. Let A' be the set represented by F(VI)
in S. Since for all n € A the sentence F(n) is provable, then A C A'.
If some number n were in both A' and J5, then F(n) would be both
provable and refutable in S (provable, since F(VI) represents A').
Hence if S is simply consistent, then A' is disjoint from B.

By the above lemma and Theorem 1 we at once have:

Theorem 2. If H(v\) separates R* from P* in S and S is sim-
ply consistent, then H(h) is undecidable in S, where h is the Godel
number of H ( V I ) .

Exercise 2. Show that if some formula separates P* from R* in S
and S is consistent, then S is incomplete.

§2. A General Separation Principle. We say that A is
separable from B in S if there is a formula F(v\) which separates A
from B in «S. By virtue of Theorem 2, to show that P.A. is incom-
plete just on the basis of its simple consistency, it suffices to show
that R* is separable from P* in P.A. This, in fact, is what Rosser

1 This result is a special case of Exercise 3 of Chapter I.
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did. As we pointed out in T.F.S., Rosser's method of separating
R* from P* in P.A. easily generalizes to the separation of any two
disjoint Si-sets in P.A.—or indeed in any system S in which all true
So-sentences are provable and in which all formulas of ̂ 4 and fis are
provable (in particular for «f> the system (Q) or even the system (R)).
More generally, we say that a formula F(VI, ..., vn] separates a rela-
tion R I ( X I , . .. ,xn) from #2(21 > • • • ,xn) if for all numbers &i , . . . , kn,
if Ri(ki,... ,kn) holds, then F(ki,.._. ,kn) is provable in <S, and if
Rz(ki,..., &n) holds, then F(ki,..., kn) is refutable in S.

We call «S a Rosser system for sets if for any Si-sets A and B, the
set A — B is separable from B — A in S. [This, of course, implies
that for any disjoint Si-sets A and B, the set A is separable from
B in <S]. And for each n > 1, we call <S a Rosser system for n-ary
relations if for any two Si-relations

the relation Ri—R^ (i.e., the relation Ri(xi,...,xn)/\R2(xi,.. .,£„))
is separable from R% — RI in <S. We call S a Rosser system if <S is a
Rosser system for sets and for all n-ary relations. We will show that
if all true So-sentences are provable in S and if all formulas of ^4
and 1̂ 5 are provable in S, then S is a Rosser system. More generally,
we will show that if S is any system in which all formulas of fi4 and
fts are provable, then for any two relations

which are enumerable in «S, their differences RI — R% and R% — RI
are separable in <S. We suggest the reader first try the following two
exercises.

Exercise 3. Let Fi(y] and Fi(y) be formulas with y as the only free
variable. Let n be any number.

1. Suppose the sentence F^n) is true and for every number m < n,
the sentence jFi(m) is false. Is the sentence

true or false?
2. Suppose the sentence jFi(n) is true and for every number

ra < n, the sentence F^(m) is false. Is the sentence

true or false?



is provable in S.
2. Suppose the sentence F%(n) is provable in S, and the sentence

Fi(m) is refutable in <S, for every m < n. Show that the sen-
tence

is refutable in <S.

The following lemma plays much the same role in Rosser's incom-
pleteness proof that the ^-consistency lemma plays in Godel's proof.
It will have other applications as well.

Lemma S—Separation Lemma. If all formulas of ̂ 4 and fis are
provable in 5, then for any two relations

enumerable in «S, their differences RI — R% and R? — RI are separable
in S.

Proof. Suppose all formulas of ^4 and fls are provable in <S. We will
show that for any two sets A and B enumerable in «S, the set B — A is
separable from A — B in S. (The proof for n-ary relations for n > 1
is an obvious modification which we leave to the reader.)

Let A(x,y) and B(x,y) be formulas that respectively enumerate
A and B in S. We show that the formula

separates B — A from A — B in S.

1. Suppose n 6 B — A. Then n £ B, and for some k, the sentence
B(n, k) is provable in S. Also, n £ A, and so for every m < k
(in fact for every number m), the sentence A(n,fh) is refutable,
and by Q4, the sentence (Vy < k) ~ A(n,y) is provable. Hence
the open formula y_< k D ~ A(n, y) is provable and, therefore,
A(n,y) D ~ (y < k) is provable. By using fis, it follows that
A(n, y) D k < y is provable, and since B(n, fc) is provable, it
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Exercise 4. Suppose all formulas of ^4 and fts are provable in «S.
Again let Fi(y) and Fi(y) be formulas with just y as a free variable,
and let n be any number.

1. Suppose the sentence Fi(n) is provable in 5 and that for every
m < n, the sentence Fi(m) is refutable in <5. Show that the
sentence
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follows that A(n,y) D (k < y A B(n,k)) is provable. Then (by
first-order logic) the formula

is provable, hence so is the sentence

2. Suppose n € A — B. Then for some k, A(n,k) is provable and
for all m < k (in fact for all m), B(n,fn) is refutable and,
therefore, (by 1^4) the sentence (Vz < fc) ~ B(n,z) is provable.
It then follows that the sentence

is provable, hence so is the sentence

and this is the sentence ~ (A(n,k) D (3z < k)B(n, z ) ) . Since
the sentence A(n,k) D (3z < fc)jB(n,z) is refutable, so is the
sentence V|/(A(n, y) D (3« < y}B(n,z)).

Exercise 5. Derive Lemma S as a consequence of Exercise 4.

Exercise 6. Suppose all formulas of ^4 and ££5 are provable in S,
and suppose A(x,y) and B(x,y) respectively enumerate sets A and
J5 in «S. Does the formula

separate B — A from A — B in 5? Does it separate A — B from B — A
in 5?

It, of course, follows from the separation lemma that if all formulas
of 1̂ 4 and fis are provable in <S, then for any disjoint sets A and B
enumerable in S and -B, it is separable from A in S (since then
B - A = B and A - B = A).

We showed in the last chapter that if all true So-sentences are
provable in S, then all Ei-relations are enumerable in S. This with
Lemma S gives:

Theorem 3. Any extension of ^4 and fts in which all true 'So-
sentences are provable is a Rosser system.

Corollary. The systems (R),(Q) and P.A. are Rosser systems.
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§3. Rosser's Undecidable Sentence. From Lemma S and
Theorem 2 we get:

Theorem 4. Let S be any simply consistent system in which the
sets P* and R* are both enumerable and in which all formulas of fl^
and £1$ are provable. Then S is incomplete.

Proof. Assume hypothesis. Then P* and R* are enumerable in S.
By the assumption of simple consistency, the sets P* and R* must
be disjoint. Then by Lemma S, R* is separable from P* in S. Hence
S is incomplete by Theorem 2.

More specifically, suppose A(x,y~) is a formula that enumerates
P* in S, and B(x,y) is a formula that enumerates R* in S. As seen
from the proof of Lemma 5, the formula

separates R* from P* in S. Then by Theorem 2, if h is the Godel
number of this formula, the sentence

is undecidable in S (assuming S is simply consistent).

We can now easily prove Theorem R. Suppose S obeys the hy-
pothesis of Theorem R. Since S is axiomatizable (by hypothesis),
the sets P* and R* are both Si. Then (by hypothesis), the sets P*
and R* are both enumerable in S. Also (by hypothesis), S is an
extension of ^4 and £1$. The conclusion then follows by Theorem 4.

More specifically, suppose S is an extension of fl^ and fis, A(x,y)
is a formula that enumerates P* in S, and B(x,y) is a formula that
enumerates R* in S. Then by Lemma S, the formula

separates R* — P* from P* — R*. Assuming that <9 is consistent, the
sets R* and P* are disjoint, and so the above formula separates R*
from P*. We let h be the Godel number of this formula. Then by
Theorem 2, the sentence

is undecidable in S (assuming that S is simply consistent).
The above sentence is Rosser's famous undecidable sentence. We

now see how Peano Arithmetic can be shown incomplete just on
the basis of its simple consistency (Godel's stronger assumption of
u;- consistency can be avoided).
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§4. The GSdel and Rosser Sentences Compared. We
now consider the system P.A. Since P.A. is axiomatizable, the set
P* is Si and so there is a So-formula A(x,y) that expresses a S0-
relation whose domain is P*. Therefore, for any number n, n e P* iff
there is some number m such that A(n, m) is a true sentence. Also,
n € P* iff En(n) is provable (in P.A.). Let us say that m is a witness
that En(n) is provable iff the sentence A(n,m) is true. Then En(n)
is provable iff there is a witness m that En(n) is provable. Similarly,
R* is Si and, therefore, there is a So-formula B(x,y) such that for
any n, En(n) is refutable iff there is some m such that 5(n, m) is
true; any such m we will call a witness that En(n) is refutable.

Now, Godel's sentence Vj/ ~ A(a, y) (where a is the Godel number
of Vt/ ~ A(x,y)) expresses the proposition that for all j/, y is not
a witness that Ea(a) is provable, but Ea(a) is the very sentence
Vy ~ A(a, t/). And so the sentence can be read "For all y, y is
not a witness that I am provable," or "there is no witness that I
am provable," or more briefly: "I am not provable." Assuming in-
consistency, this sentence is undecidable in P.A^

The dual form of Godel's sentence is 3yB(b, y } , where b is the
Godel number of the formula 3yB(x, y). This sentence can be thought
of as saying: "There is a witness that I am refutable," or more briefly:
"I am refutable." Again, under the assumption of u>-consistency, this
sentence is undecidable in P.A.

Now let us consider Rosser's sentence

where h is the Godel number of the formula

This sentence can be thought of as saying: "Given any witness y
that I am provable, there is a number z less than or equal to y that
is a witness that I am refutable."

Incidentally, the formula

also separates R* from P* in P.A. (why?). If k is the Godel number
of this formula, then the sentence

is also undecidable in P.A. (assuming P.A. is simply consistent). This
sentence can be thought of as saying: "There is a witness that I am
refutable and no number less than or equal to it is a witness that I
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am provable."

Exercise 7. The results of this exercise will be needed in the next
chapter.

Suppose S is an extension of ^4 and fls. Suppose also A is a set
enumerable in S and R(x,y) is a relation enumerable in S. Prove
that the relation x 6 A A ~ R(x,y~) is separable in <S from the
relation R(x,y) A x £ A.

Exercise 8. Again let S be any system in which all formulas of
04 and fig are provable, and let A and B be sets each of which is
enumerable in S.

Prove that there is a formula i/}(x,y) such that for any numbers n
and m, the following two conditions hold.

1. If n € A and m g B, then il>(n,m) is provable.
2. If m £ B and n £ A, then ^>(n,m) is refutable.

Exercise 9. The following proposition generalizes Lemma S and
also directly provides solutions to the last two exercises.

Proposition S'. Let <S be any system in which all formulas of ^4
and fis are provable. Let RI(XI, ... ,3;^) and R%(XI, ... ,xn) be rela-
tions enumerable in S. Then there is a formula

with 2>i, . . . £fc and y\, . . . , yn as the only free variables such that for
all numbers ai , . . . ,a^ and & i , . . . , & r a , the following two conditions
hold:

1. If Ri(ai,...,ak) A ~ #2(61, • • • ,bn), then
•0(ai, . . . , afc,&i, . . . ,6n) is provable in <5.

2. If R2(bi,. . . ,bn) A ~ Ri(ai,. . . ,afc), then
^/>(ai, . . . ,ajt,6i, . . . ,6n) is refutable in S.

(a) Prove Proposition S'.
(b) Show how Lemma S and the solutions of the last two ex-

ercises can be derived from Proposition S'.
(c) Show how Proposition S' can be derived from Exercise 4.

Exercise 10. Suppose S is a system (not necessarily one in which
all formulas of £l± and fi5 are provable) such that for any disjoint
Si-sets A and B, the set A is separable from B in S. Now suppose
A and B are Si-sets which are not disjoint. Is A — B necessarily
separable from B — A in SI
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§5. More on Separation. The solution of Exercise 10 is af-
forded by the following purely set-theoretic principle.

Consider two Ei-sets A and B. Then there are So-relations jR1(x,y)
and RZ(X,y) with respective domains A and B. Let A' be the set of
all n such that

and let B' be the set of all n such that

Let us say that y puts n in A iff Ri(n,y) holds and that y puts
n in B iff Ri(n, y) holds. Then n € A iff some y puts n in A and
n € -B iff some y puts n in B. Let us say that n is put in A before n
is put in B if there is some y that puts n in A and no z < y puts n in
B. The set A' is then the set of all n such that n is put in A before
it is put in B and B' is the set of all n which is put in B before it is
put in A. The sets A' and B' are clearly disjoint (since no number
can be put in A before it is put in B and also be put in B before it
is put in A). Also A — B C A' because if n £ A and n £ B, then n is
put in A before it is put in B, since n is not put in B at all. Finally,
the sets A' and B' are both Si (since the relations

and

are SQ). This proves:

Theorem 5. For any two T^i-sets A and B, there are disjoint Sj-
sets A' and B' such that (A - B) C A' and (B - A) C B'.

Suppose now <S is a system such that for any two disjoint Si-
sets A and 5, the set A is separable from B in S. Now, suppose
A and B are Si-sets not necessarily disjoint. Then by the above
theorem, there are disjoint Si-sets A' and B' such that A — B C A'
and B — A C B'. By hypothesis there is a formula ^(^i) separating
A' from 5' in <S. Then F(VI) obviously separates A — B from B — A
in S (because n £ A — B => n £ A' =$• F(n) provable and n €
B — A => n £ B' =$• F(n) refutable). And so we have:

Corollary. If every disjoint pair of ^\-sets is separable in S, then
S is a Rosser system for sets.
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Of course, the above theorem and its corollary also hold for n-ary
relations where n > 1. The reader can easily verify this.



Chapter VII

Shepherdson's Representation Theorems

We have already remarked that at the time of Godel's proof, the only
known way of showing the set P* of Peano Arithmetic to be repre-
sentable in P.A. involved the assumption of ^-consistency. Well, in
1960, A. Ehrenfeucht and S. Feferman showed that all Si-sets can
be represented in all simply consistent axiomatizable extensions of
the system (R). Hence, all Si-sets can be shown to be representable
in P.A. under the weaker assumption that P.A. is simply consis-
tent. Their proof combined a Rosser-type argument with a cele-
brated result in recursive function theory due to John Myhill which
goes beyond the scope of this volume. Very shortly after, however,
John Shepherdson [1961] found an extremely ingenious alternative
proof that is more direct and which we study in this chapter. [In
our sequel to this volume, we compare Shepherdson's proof with the
original one. The comparison is of interest in that the two methods
are very different and the proofs generalize in different directions
which are apparently incomparable in strength.]

§1. Shepherdson's Representation Theorem. We re-
call that for each n > 1, a system S is called a Rosser system for n-ary
relations if for any Si-relations R\(x\,..., xn) and R%(XI, ..., £n),
the relation R\ — R2 is separable from R^ — RI in S. We wish to
prove the following theorem and its corollary (Th. 1 below).

Theorem Si—Shepherdson's Representation Theorem. If S
is a simply consistent axiomatizable Rosser system for binary rela-
tions (n-ary relations for n = 2), then all Si-seis are representable
in S.

86
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Theorem 1—Ehrenfeucht, Feferman. AllTii-sets are represen-
table in every consistent axiomatizable extension of the system (R).

Shepherdson's Lemma and Weak Separation. For emphasis,
we will now sometimes write "strongly separates" for "separates".
We will say that a formula F(v\) weakly separates A from B in
S if F(v\) represents some superset of A disjoint from B, We
showed in the last chapter (Lemma 1) that strong separation im-
plies weak separation provided that the system S is consistent. We
also say that a formula F(VI,. .. ,vn) weakly separates a relation
R I ( X I , . .. ,xn) from .R2(a;i,... ,xn) if F(VI, .. . ,un) represents some
relation R'(XI,. .. ,xn) such that RI C RI' and R\ is disjoint from
-R2. With relations as with sets, strong separation implies weak
separation if the system S is consistent (as the reader can easily
verify). Let us note that to say that F(v\,... ,un) weakly sep-
arates RI(XI, ... ,xn) from R I ( X I , ... ,xn) is equivalent_to saying
that for every n-tuple (fci , . . . , &„) € RI, the sentence F(ki,..., kn)
is provable, and for every n-tuple ( fc i , . . . , f c n ) € R^, the sentence
F(ki,..., kn) is not provable.

The Function TL(x,y,z). For any expression E, we let E[m,n] be
the expression

If E is a formula in which v\ and u2
 are the only free variables, then

E[m,n] is a sentence equivalent to the sentence E(m,n) (by which
we mean the result of substituting m and ra for all free occurrences
of v\ and v-i respectively in E). Also, if E is a formula, then the
formula

is logically valid. Hence it is provable in S and, therefore, E\m,n] is
provable in S iff E(m,n) is provable in S.

We now define H(x,y, z) to be the Godel number of Ex[y,~z] (Ex

is the expression whose Godel number is a;). We note that if

then Ex is automatically a formula. Hence Ex(\j,~z) is provable (since
Ex[y,~z] is provable). Conversely, if Ex(y,J) is provable, then so is
Ex[y,J], and hence R(x,y, z) 6 P. So for any numbers x,y and z,
Ex[y,~z] is provable <-» Ex(y,J) is provable ^ TL(x,y,z) £ P.
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Lemma 1—Shepherdson's Representation Lemma. For any
set A, if the relation x £ A A II(j/, x,y) £ P is weakly separable in
S from the relation TL(y,x,y) € P A x £ A, then A is representable
in S. More specifically, if Eh(vi,vz) is a formula that effects the
separation, then Eh(vi,h} represents A in S.

The above lemma easily follows from the following lemma, which
will have other applications later on.

Lemma 1*. For any relation R(x,y), if ' Eh(vi,vz) is a formula that
weakly separates the relation

from

then for every number n, the sentence Eh(n,h) is provable in S iff
R(n,h) holds.

Proof. Assume hypothesis. Then for any numbers n and m:

(1) R(n, m) A II(m,n,m) ^ P =>• Efl(n,m') is provable.
(2) II(m,n,m) 6 PA ~ R(n,rri) => Eh(n,m) is not provable.

By (1), taking h for m, if R(n, h) and II(/i, n, h) <£_ P, then Eh(n, h)
is provable.JThis means that if R(n,h) and Eh(n,h) is not provable,
then Eh(n, /i) is provable, from which it follows that if R(n, /i), then
Eh(n,h) is provable.

By (2), taking h for m, if II(ft,n,/i) S P and ~ R(n,h), then
Eh(n,h) is not provable, which means that if Eh(n,h) is provable
and ~ R(n,h), then -E/i(n, h) is not provable, from which follows
that if Eh(n, h) is provable, then R(n, h) must hold. Therefore, (by
(1)) Eh(n,h} is provable iff R(n,h).

Lemma 1 results from Lemma 1* by taking for R the set of all
ordered pairs (x,y) such that x £ A. If the hypothesis of Lemma 1
holds, then by Lemma 1*, for all n, £^(rT, /i) is provable «-»• -R(n, /i) <-»•
n € A. Therefore, the formula Eh(v\,h) represents A in S.

Now we can easily prove Theorem Si. Using the fact that the
relation x *i3 y — z and the relation 13* = y are both Si, the
relation II(a;, y, z) = w is easily seen to be Si. Therefore, the relation
n(y,x,j/) = z (as a relation among x, y and z) is Si, and so if <5 is
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axiomatizable, then the set P is Si- Hence the relation

is Si (it can be written as 3z(n(y,x,y) = z f \ z £ P). For any Si-set
A, let RA(x,y) be the relation x € A. The relation R^(x,y) is also
Si (it can be written as x € A A j/ = y). Then by the hypothesis of
Theorem Si, the relation

is strongly separable in 5 from the relation

Thus, the relation

is strongly separable from the relation

By the assumption of simple consistency, the first of the above rela-
tions is weakly separable from the second. Then by Lemma 1, A is
represent able in S. This proves Theorem Si.

Suppose now S is an axiomatizable consistent extension of (R) (or
for that matter, any consistent axiomatizable extension of ̂ 4 and J)5

in which all true So-sentences are provable). If A is a Si-set, then
there is a So-formula A(x,j/) that enumerates the set A in S. The
relation II( j / ,x,y) 6 P is also Si, so there is a So-formula B(x,y,z)
that enumerates this relation in <S. Then the formula

strongly separates (hence also weakly separates, since S is consistent)
the relation

from

in S. Letting h be the Godel number of this formula, the formula

represents A in <5>, by Lemma 1. We, thus, have a concrete idea of
what the representing formula for A looks like.
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Discussion. Let us now take a closer look into the significance of
the above formula. Let us say that z is a witness that a; is in A if
the So-sentence A(x,"z) is true. Let us say that z is a witness that
Ey(x,y} is provable if the S0-sentence B(x,y,'z) is true. Then for
any number n, the sentence

can be read, "For any witness z that Eh(n, h) is provable, there is a
witness w < z that n is in A." However, Eh(n,h) is this very sen-
tence! And so the sentence can be paraphrased, "Given any witness
that I am provable, some number less than or equal to it is a witness
that n 6 A". The sentence, therefore, is self-referential; it refers not
only to n's membership in A, but also to its own provability in S.

An alternative formula that works is the formula

where k is the Godel number of

For any ra, the sentence

can be read: "There is a witness that n is in A, and no number less
than or equal to it is a witness that I am provable."

Exercise 1. Show that for every positive n, if S is a consistent
axiomatizable Rosser system for (n + l)-ary relations, then every
ra-ary Si-relation R(XI, . . . , x n ) is representable in <S.

§2. Exact Rosser Systems. For any disjoint pair (A,B) of
sets, we say that a formula -F(«i) exactly separates A from B in
S (or that F(v\) exactly separates the ordered pair (A ,B) in <S) if
F(VI} represents A and its negation ~ -F(ui) represents B in S. This
means that for all n 6 A, F(n) is provable; for all n € 5, F(n) is
refutable, and for all n £ (A U J3), F(n) is undecidable in S. [We
note that if A is exactly separable from B in <S, it is also strongly
and weakly separable from B, and <S must be simply consistent.]

We call S an exact Rosser system for sets if every disjoint pair
(A, B) of Si-sets is exactly separable in S. In the Putnam-Smullyan
paper [1960], we proved that every consistent axiomatizable exten-
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sion of (R) is an exact Rosser system for sets (in fact for n-ary
relations for every n). The argument used a result of Smullyan from
recursion theory (a double analogue of Myhill's theorem) that we
will give in our sequel. But Shepherdson gave an alternative proof
that "doubles up" on his construction of the last section. Again, his
method and the method of Putnam-Smullyan generalize in different
directions which we will compare in our sequel.

Informally, what Shepherdson did is this. Given two formulas
A(x,y) and B(x,y), enumerating two disjoint Si-sets A and B in
S where S is an axiomatizable extension of (J?), Shepherdson con-
structed a formula <f>(x) such that for any number n, the sentence
(/>(n) expresses the proposition, "For any z, if z is either a witness
that I am provable or a witness that n is in B, then there exists some
w < z that is either a witness that I am refutable or a witness that
n is in A." Now for the formal details. [We recall that R is the set
of Godel numbers of the refutable formulas.]

Lemma 2—Shepherdson's Separation Lemma. For any dis-
joint sets A and B, if the relation

is strongly separable from

and if S is simply consistent, then A is exactly separable from B in
S.

We shall prove the following strengthening of Lemma 2 (which
will have an application in our sequel).

Lemma 2*. Suppose Ri(x,y) and R<2(x,y) are disjoint relations.
Let Si(x,y) be the relation

and let Sz(x)y') be the relation

Then if Eh(vi,V2) is a formula that strongly separates Si — 82 from
S^ — Si in S and S is consistent, then for any number n:

1. Ri(n,h) iff Eh(n, h) is provable inS.
2. R-2,(n,li) iff Eh(n,h) is refutable in S.
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Proof. Assume hypothesis. Taking h for y, we have for all n:

(1) [# i (n , f t )VlI( f t ,n , f t ) € #]A ~ [.R2(n,ft) Vl l ( f t ,n , f t ) € P] =»
Eh(n,h) is provable.

(2) [JZ2(n,_fc) V II(ft, n, ft) € P] A ~ [#i(n, ft) V H(ft, n, ft) € #] =*>
Eh(n,h) is refutable.

(a) Now suppose Ri(n,h). Then the left conjunctive clause
of the antecedent of (1) is true and the right conjunctive
clause reduces to II(/i, n, h) ^ P (because RI is disjoint
from RZ, so R-2(n,h) is false). Therefore, (1) reduces to
Ii(h, n,h) £ P =>• Eh(n,h) is provable, which means that
if Eh(n,h) is not provable, then it is provable. Hence
Eh(n,h) must be provable (assuming Ri(n, /i)).
Conversely, suppose Eh(n, h) is provable. Then

so the left conjunctive clause of the antecedent of (2) is
true and the right conjunctive clause reduces to

(because II(ft, n, h) G R is false, since II(ft, n, h) € P and S
is assumed consistent).^Therefore, ~ Ri(n,ti) =$• Eh(n,h)
is refutable. But Eh(n,h) is not refutable (by consistency)
and so Ri(n,h) holds. This proves (1).

(b) The proof of (2) is symmetric and is left to the reader.

Remark. The above proof embodies a cute principle of preposi-
tional logic. Suppose we have four propositions ri,ry,qi and 52, and
suppose the following four conditions are given:

(1) [ ( r i V f c O A ~ ( r 2 V ft )]=*•?!
(2) [ ( r 2 V f t ) A ~ (r-x V 92)j =» q2

(3) ~ (r-i A r2)
(4) ~ (ft A g2)

It then follows that ri «-+ ^ and TI ^ (&•

Coming back to our subject, Lemma 2 is, of course, a consequence
of Lemma 2* (define R\(x, y} iff x £ A and Ri(x,y} iff a; € -B), and
from Lemma 2 we get:
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Theorem 82—Shepherdson's Separation Theorem. Every
consistent axiomatizable Rosser system for binary relations is an ex-
act Rosser system for sets.

Proof. If S is axiomatible, then the relations H(y, x,y) € P and
n(j/,a;,y) € R are both Si. Hence for any Ex-sets A and B, the
relation

and the relation

are both Si. If, furthermore, S is a Rosser system for binary re-
lations, then the differences of the above Si-relations are strongly
separable in S. Hence the conclusion follows by the above lemma.

Theorem 2—Putnam-Smullyan. Every simply consistent axiom-
atizable extension of (R) is an exact Rosser system for sets.

Proof. By Theorem 82 and the fact that every extension of (R) is a
Rosser system.

Exercise 2. Suppose S is a consistent axiomatizable extension of
(R). Suppose also A and B are disjoint Si-sets, and A(x,y) and
B(x,y) are So-formulas that respectively enumerate A and B in
S. Suppose C(x,y,z) and D(x,y,z) are formulas that respectively
enumerate the relations

and

Construct a formula that exactly separates A from B in <5. [This
can be done in two ways—one involves a formula beginning with a
universal quantifier and the other involves a formula beginning with
an existential quantifier.]

§3. Some Variants of Rosser's Undecidable Sentence.
Shepherdson's methods have suggested to us some curious variants
of Rosser's Undecidable sentence.

Suppose S is a simply consistent system, not necessarily axioma-
tizable. We know that if either of the sets P* and R* is enumerable
in S and S is w-consistent, then S is incomplete. We also know that
if both the sets P* and R* are enumerable in S and S is an extension
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of 04 and fls, then S is incomplete (by Rosser's argument). Our
present point is that in place of the two sets P* and R*, we can get
by with the single triadic relation H ( x , y , z ) € P—its enumerability
in S is enough to ensure incompleteness (assuming S is a consistent
extension of £1^ and ^5). In fact, we can even get by with the single
binary relation H ( y , x , y ) € P. We will show these facts by using
some variants of Shepherdson's arguments.

In that which follows, S is assumed simply consistent, but not
necessarily axiomatizable.

Theorem 3. // the relation

is weakly separable in S from the relation

then S is inconsistent or incomplete.

Proof. Let Eh(vi,vz) be a formula which effects the separation. Then
by Lemma 1*, for any n,

is provable. Hence En(n,h) is provable iff Eh(n, h) is provable. Now
let Ek(vi,V2)_be the negation of Eh(vi,-vz)' Then Ek(k,h) is prov-
able iff Eh(k, h) is refutable. But by the preceding sentence, it is also
true ih&t_E_k(k,h) is provable ^_Eh(k,h) is provable. This means
that Eh(k,h} is refutable «-> Eh(k,h) is provable. Hence S is incon-
sistent or incomplete. Under the assumption that S is consistent,
the sentence Eh(k,h) is undecidable in S.

Corollary. If the relation H(a:,j/, z) £ P is enumerable in S and S
is a consistent extension 0/^4 and fis, then S is incomplete.

Proof. Suppose F(vi,vz,va, Uj) is a formula that enumerates the rela-
tion H(x,y,z) € P. Then obviously F(V\,V\,VI,V$) enumerates the
relation Ii(x,x,y) € P and F(VI,V 1,^2,^3) enumerates the relation
H(y, x,y) 6 P. Therefore, the hypothesis implies that the relations
H ( x , x , y ) 6 P and H(y, x,y) € P are both enumerable in S. Hence
their differences (in either order) are strongly separable in «S, and so
the conclusion follows from Theorem 3.

More specifically, it can be easily seen that if h is the Godel number
of the formula
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and k is the Godel number of its negation, then the sentence

is undecidable in S (if <S is consistent).

We have remarked that we could use the relation H(y,x,y) € P
in place of the relation n(x,j/,2) 6 P. This can be done in at least
two different ways, indicated in the exercises that follow.

Exercise 4. Suppose there is a number h such that for all n, Eh(n, h)
is provable in S iff En(h,n) is provable in <S. Show that «S, if consis-
tent, is incomplete. [Hint: Consider the Godel number k, not of the
formula ~ Eh(vi,V2), but of the formula ~ Eh(vi,v\).}

Exercise 5. Using Exercise 4 and Lemma 1*, prove that if the re-
lation

is weakly separable in <5 from the relation

Then S, if consistent, is incomplete.

Exercise 6. Using Exercise 5, show that if the relation

is enumerable in «S and S is a consistent extension of fi4 and fls,
then S is incomplete.

Exercise 7. How does Exercise 6 yield another proof of Theorem 3?

Exercise 8. Show that if the set of x such that H(x,x,x) 6 P is
representable in <S and S is consistent, then S is incomplete.

Exercise 9. Using Exercise 8, show that if the relation

is weakly separable in S from the relation

then <S, if consistent, is incomplete.

Exercise 10. Show that Exercise 9 provides another solution of Ex-
ercise 6.
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§4. A Strengthening of Shepherdson's Theorems. If
we use Lemmata 1* and 2* in place of Lemmata 1 and 2 respectively,
we get the following strengthening of Theorems Si and 5*2:

Theorem SJ. If S is a consistent axiomatizable Rosser system for
binary relations, then for any Hi-relation R(x,y), there is a number
h such that £^(^1,^2) is a formula, and Eh(vi,h) represents the set
of all n such that R(n, h).

Theorem 82• Under the same hypothesis, for any disjoint Si-re/a-
tions RI(X, y) and R<2,(x, y), there is a number h such that Eh(vi, v%)
is a formula, and Eh(vi,h) exactly separates the set of all n such
that Ri(n,h) from the set of all n such that Ri(n,h}.

These results will have interesting applications in our sequel. Their
proofs are obvious modifications of the proofs of Theorems 6*1 and
S2-

Exercise 11. Prove Theorems S^ and 5*2-



Chapter VIII

Definability and Diagonalization

In this chapter we establish some basic facts about EI-relations and
functions that will be needed for the rest of this study. We also intro-
duce the notion of fixed-points of formulas and prove a fundamental
fact about them which is crucial for Godel's second incompleteness
theorem and related results of the next chapter.

§1. Definability and Complete Representability. A for-
mula F(vi,...,vn) is said to define a relation R(XI,. .. ,£n) in a
system S if for all numbers ai,..., an, the two following conditions
hold.

(1) -R(ai,... ,an) =>• F(ai,... ,an) is provable in S.
(2) R(ai,...,an) =>• F(ai,... , an) is refutable in S.

We say that F(VI, ..., vn) completely represents R(XI, . . . , x n ) in
S iff F represents R and ~ F represents the complement R of R in
S—in other words, if (1) and (2) above hold with "=£." replaced by
'W.

Proposition 1. If F defines R in S and S is consistent, then F
completely represents R in S.

Proof. Assume hypothesis. We must show that the converses of (1)
and (2) above must hold.

Suppose F(ai,... ,an) is provable in S. Then F(ai,. . . ,«„) is not
refutable in <S (by the assumption of consistency). Therefore by (2),
j?(ai , . . . ,an) cannot hold. Hence R(a\,...,an) holds.

Similarly, if F(ai,...,an) is refutable, then it is not provable.
Hence by (1), R(ai,..., an] cannot hold and hence -R(«i,. . . , an).

97
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Recursive Relations. By a recursive set or relation, we mean one
such that it and its complement are both Si. [There are many
different, but equivalent, definitions in the literature of recursive
relations. We will consider some others in the sequel to this volume.]

It is obvious that a formula F defines a relation R in S iff F
separates R from R in S. Suppose now S is a Rosser system and
that R is a recursive relation. Then R and R are both Si. Hence
R is separable from R in 5, which means that R is definable in S.
And so we have:

Proposition 2.

1. //S is a Rosser system, then all recursive relations are definable
in S.

2. If S is a consistent Rosser system, then all recursive relations
are completely representable in S.

Statement (2) follows from (1) by Proposition 1. In the last chap-
ter we proved that the system (R) is a Rosser system and so we
have:

Theorem 1. All recursive relations are definable in (R).

Note. If a set or relation is definable in a system S, it is obviously
definable in every extension of S. Therefore, all recursive relations
are definable in all consistent extensions of (R)—in particular, in the
systems (Q) and P.A.

Exercise 1. Show that if F(VI,VZ) defines R(xi,x-2) in S and A is
the domain of R, then F(v\,v-z) enumerates A in S.

Exercise 2. State whether the following is true or false: If all true
So-sentences are provable in <S, then all So-relations are definable in
S.

Exercise 3. Show that for the complete theory A/", representability,
definability and complete representability all coincide. Is this true for
P.A. rather than A/"? [Hint: Is the set P* completely representable
in P.A.?]

§2. Strong Definability of Functions in S. A formula
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will be said to weakly define a function /(cci,. . . , xn) in S if it defines
the relation

in S. We shall say that the formula strongly defines, or more briefly,
defines the function /(zi,..., £„) in S iff for all numbers ai , . . . , an

and b, the following three conditions hold:

(1) If /(fli, . . . , an} — b, then F(ai,... ,an,6) is provable in S.
(2) If /(ai,..., an) ^ b, then F(ai,...,an, 6) is refutable in «S.
(3) If /(ai,..., an) = 6, then the sentence

is provable in 5.

Conditions (1) and (2) jointly say that F weakly defines / in S.
Thus, F strongly defines / in <S iff F weakly defines / in S and
condition (3) holds.

We will be concerned mainly with functions of one argument. The
next theorem and its corollaries reveal the significance of strong de-
finability.

Theorem 2. If f(x) is strongly definable in S, then for any formula
G(v\), there is a formula H(v\) such that for any number n, the
sentence H(n) = <7(/(n)) is provable in S.

Proof. Suppose F(VI,V%) strongly defines /(#) in S. Given a formula
G(VI), we let H(VI) be the formula

We show that the formula H(VI) works.
Take any n and m such that f ( n ) = m. We are to show that the

sentence H(n) = G(m) is provable in S.

1. Since ^(^,^2) defines /(a;), then F(n,m) is provable in S.
Hence G(m) D (F(n,m) A G(m)} is provable and, therefore,
G(m) D 3t>2(.F(n, v2) A G(v2)) and G(m) D H(n) are provable
in S.

2. It follows from condition (3) of strong definability that the open
formula F(n, v?) D v2 — m is provable. Therefore,

is provable, and (v2 = m A C?^)) D G(rn) is logically valid.
Hence provable in S. Therefore, (F(n, v2) A G(v2)) D G(rn) is
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provable. Hence by first-order logic,

is provable—i.e. H(n) D G(m) is provable.

By (1) and (2), the sentence H(n) = G(m) is provable in S.

Corollary. Suppose /(x) is strongly definable in S. Then

1. For any set A representable in S, the set f~l(A) is representable
in S.

2. For any pair (A,B) that is exactly separable in S, the pair
(/~1(A),/~1(jB)) is exactly separable in S.

3. For any set A definable in S, the set f~l(A) is definable in S.

Proof. Suppose /(x) is strongly definable in S. Then by Theorem 2,
for any formula G(t>i), there is a formula H(VI) such that for any
n, the sentence H(n) = G(/(n)) is provable in «5. This, of course,
implies that for any n, H(n) is provable in <S iff G(/(n)) is provable
in S and H(n) is refutable in S iff G(f(n}) is refutable in S.

1. Suppose G(VI) represents A in S. Then for any n,
n e f~l(A) <-> /(n) € A ++ G(f(ri)} is provable in S <-> H(n)
is provable in S. Hence H(v\) represents /-1(A) in S.

2. Suppose also the negation of G(v\) represents B. Then for any
». » € f~l(B) *-» f ( n ) e B <•* G(/(n) is refutable in 5 «-* J(n)
is refutable in «S. Therefore, ~ H(v\) represents f~l(B). So
Jf(vi) exactly separates ( f ~ l ( A ) , f ~ ' i ( B ) ) in <S.

3. This follows from 2, taking ^4 for B.

Exercise 4. Suppose /(x) is weakly definable in <S without neces-
sarily being strongly definable in S. Show that if S is w-consistent,
then for any set A definable in S, the set f~l(A) is representable in
S.

§3. Strong Definability of Recursive Functions in (R),
A function f(x\,..., xn) is called recursive iff the relation

is recursive. By Theorem 1, all recursive functions are weakly defin-
able in (/?). We now wish to prove



Strong Definability of Recursive Functions in (R) 101

Theorem 3. All recursive functions are strongly definable in (R).

This will follow from Theorem 1 once we have proved:

Lemma. If all formulas of £l± and fis are provable in S, then any
function weakly definable in S is strongly definable in S.

Proof. We illustrate the proof for functions of one argument.
Suppose all formulas of ^4 and fis are provable in S and F(x, y) is

a formula that weakly defines f ( x ) in S. Let G(x,y) be the formula

We show that G(x,y) strongly defines f ( x ) in S.
Suppose f(n) = m. We are to show three things:

(1) G(n, m) is provable in S.
(2) For every k ^ m,G(n,k) is refutable in S.
(3) Vy(G(n, y) D y = m) is provable in S.

(1) For any k < m, the sentence F(n,k) D m < k is provable,
because if k < m, then F(n,k) is refutable, and if k = m, then
m < k is provable (by fis). Then by ££4, the formula

is provable. Also

is, obviously, provable, and so by fis, F(n, z) D m < z is prov-
able, and hence, \/z(F(n,z) D m < z) is provable. Also .F(n,m) is
provable and so

is provable— i.e. G(n, m) is provable.
(2) The proof of (2)_is obvious. For any k j=_ m, F(n,k) is

refutable. Hence G(ri, fc) is refutable (since G(n,k) D F(n,k] is,
obviously, provable).

(3) To prove (3), we first show that the formula G(n, y) D y <m
is provable. Well,

is, obviously, provable. Hence
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is provable. But F(n,rn) is provable, and so by prepositional logic,
G(n, y) D y < m is provable.

Next we note that for any k < m, G(n, k) D k — mjs provable be-
cause if k < m, then G(n,k) is refutable (since F(n,k) is refutable),
and if A; = m, then k = m is provable. Then by ^4, the formula
y < m D (G(n, y) D y = m) is provable. But G(n, y) 3 y < m is
provable (as we have shown) and so G(ra, y) D y = m is provable.
Hence Vy(G(n, y) ^ y = m) is provable. This concludes the proof.

Since all formulas of ^4 and fi$ are provable in (R) and all recur-
sive functions are weakly definable in (R), then by the above lemma,
all recursive functions are strongly definable in (J?), which establishes
Theorem 3.

Proposition 3. For any function f(x\,..., xn), if the relation

is Si, then the function /(xi,..., xn) is recursive.

Proof. Suppose the relation /(:EI, ... ,xn) = xn+i is Sj. Then the
relation /(xi,... ,a;n) ^ xn+\ is also EI, for it can be written as

[This condition is obviously S and we know that all E-conditions are
SL]

The Diagonal Function. We know that the diagonal function d(x)
is Si. So by Proposition 3, it is recursive. Then by Theorem 3 (and
the fact that any function strongly definable in a system is strongly
definable in every extension of the system), we have

Proposition 4. The diagonal function d(x) is strongly definable in
every extension of (R).

§4. Fixed Points and Godel Sentences. For any expres-
sion X, we define X to be the numeral designating the Godel number
of X. Thus, for any formula F(VI) and any expression X, F(X) is
F(at), where x is the Godel number of X.

A sentence X is called a fixed point of a formula -F(ui) (in a system
<5) if the sentence X = F(X] is provable in S.

Theorem 4. If the diagonal function d(x) is strongly definable in
$, then every formula F(v\) has a fixed point (inS).
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Proof. Suppose the diagonal function d(x) is strongly definable in
S. Let F(v\) be any formula in vi. By Theorem 2, there is then
a formula -ff(wi) such that for any number n, H(n) = F(d(n)) is
provable in «S. Then H(h) = F(d(h)) is provable in «£, where h is
the Godel number of H(v\). Therefore, H [h] = F(d(h)) is provable
in <S (because the sentence H [h] = H(li) is logically valid). But d(Ji)
is the Godel number of H[h], and so X = F(X) is provable in S,
where X is the sentence H[h].

Corollary 1. IfSis any extension of (R), every formula F(VI) has
a fixed point in S.

Godel Sentences and Fixed Points. In Chapter 2, we defined a
sentence X to be a Godel sentence for a set A iff it is the case that
X is true iff A contains the Godel number of X. More generally, let
us call X a Godel sentence for A with respect to a system S if X
is provable in S iff A contains the Godel number of X. Thus, X is
a Godel sentence for A, in the sense of Chapter 2, if X is a Godel
sentence for A with respect to the complete theory M.

Let us call a function f ( x ) acceptable in «S if for every set A repre-
sentable in «S, the set f~l(A) is also representable in S. The following
theorem (a generalization of Theorem 1 of Chapter 2) is apparently
of incomparable strength with Theorem 4 above; the hypothesis and
the conclusion are both weaker (cf. discussion that follows).

Theorem 5. If the diagonal function d(x) is acceptable in S, then
for every set A representable in S, there is a Godel sentence for A.

Proof. Exercise.1

Discussion. By statement (1) of the corollary of Theorem 2, if f ( x )
is strongly definable in S, then f ( x ) is acceptable in S. Therefore,
the hypothesis of Theorem 4 is stronger than the hypothesis of The-
orem 5. The conclusion of Theorem 4 is also stronger than the
conclusion of Theorem 5; this can be seen as follows. To say that
X is a Godel sentence for the set represented by F(VI) in S is to
say that X is provable in S iff F(X) is provable in S (why?). To
say that X is a fixed point of F(VI) is to say that the equivalence
X = F(X] is actually provable in S. So a fixed point for F(v\) is
automatically a Godel sentence for the set represented in S by F(VI),
but (in general) it is more.

1 Cf. proof of Theorem 1, Chapter 2.
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Exercise 5.2 Suppose F(x,y) is a formula that enumerates, not
P*, but the set P in «S, and X is any fixed point of the formula
Vy ~ F(x,y). Show that if S is consistent, then X is not provable
in 5, and if S is u>-consistent, then X is not refutable in S. How
can this be used to show that if P.A. is w-consistent then P.A. is
incomplete?

Exercise 6.3 Suppose S is an extension of Q* and fis, and F(x,y]
enumerates P in S and G(x,y) enumerates R in S. Show that any
fixed point of the formula

is undecidable in <S (assuming S is simply consistent).

Exercise 7. More generally, show that if H(x} is a formula that
represents in S some superset of R that is disjoint from P, then any
fixed point of H(x) is undecidable in S. [We do not need to use £^4
and fis for this.]

Exercise 8. Prove the following theorem of Tarski: If the diagonal
function d(x) is strongly definable in <5 and S is consistent, then the
set P is not definable in S.

§5. Truth Predicates. A formula T(VI) is called a truth-
predicate for S if for every sentence X, the sentence X = T(X)
is provable in S.

The following two Tarski-type theorems appear to be incompara-
ble in strength.

Theorem 6. If S is correct (i.e., a subsystem of N), then there is
no truth predicate for S.

Theorem 7. If S is any simply consistent system in which the di-
agonal function d(x) is strongly definable, then there is no truth-
predicate for S.

Proof of Theorem 6. Suppose there were a formula T(VI) such
that for every sentence X, the sentence X = T(X) is provable in <S.
If, furthermore, S is correct, then for any sentence X, the sentence
X = T(X) must, therefore, be true. Hence X is true iff T(X) is

2 A Variant of Godel's Proof
3 A Variant of Rosser's Proof
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true. This means that the formula T(VI) expresses the set of Godel
numbers of the true sentences, contrary to Tarski's theorem for HA-

Proof of Theorem 7. Suppose d(x) is strongly definable in S, and
T(v\) is a truth-predicate for S. By Theorem 4, there must_be a
sentence X (a fixed-point for ~ T(v\y] such that X = ~ T(X) is
provable. But also X = T(X) is provable (since T(VI) is a truth-
predicate). Hence it follows that T(X) =~ T(X) is provable in <S,
which means that S is inconsistent.



Chapter IX

The Unprovability of Consistency

Godel's second incompleteness theorem, roughly stated, is that if
Peano Arithmetic is consistent, then it cannot prove its own consis-
tency.1 The theorem has been generalized and abstracted in vari-
ous ways and this has led to the notion of a provability predicate,
which plays a fundamental role in much modern metamathematical
research. To this notion we now turn.

§1. Provability Predicates. A formula P('tfi) is called a
provability predicate for S if for all sentences X and Y the following
three conditions hold:

PI: If X is provable in «S, then so is P(X).
P2: P(X D y) D (P(X) D P(F)) is provable in S.
P3: P(X) D P(P(X)) is provable in S.

Suppose now P(VI) is a Si-formula that expresses the set P of
the system P.A. Under the assumption of w-consistency, P(VI) rep-
resents P in P.A. Under the weaker assumption of simple consis-
tency, all that follows is that P(VI) represents some superset of P,
but that is enough to imply that if X is provable in P.A., then so is
P(X). Therefore property PI holds. As for property PZ, the sentence
P(X D Y) D (P(X) D P(Y)) is obviously true (its truth is equiva-
lent to the proposition that if X 3 Y and X are both provable in
P.A., then Y is provable in P.A., which, of course, is the case since
modus ponens is an inference rule of P.A.). It is not very difficult
to formalize this argument and show that the above sentence is not
only true, but provable in P.A.

1A precise formulation of this theorem will be given in this chapter.
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As for property PZ, the sentence P(X) D P(P(.X")) is, of course,
true (its truth is equivalent to the proposition that if X is provable,
then so is P(X) because P(X) is true iff X is provable; P(P(X)) is
true iff P(X) is provable). So the truth of the sentence reduces to
property PI. The sentence is not only true but even provable in P.A.,
but the proof of this fact is extremely elaborate and goes beyond the
scope of this volume. The fact is a special case of the well-known fact
that for every Si-sentence Y, the sentence Y D P(Y) is provable in
P.A. A sketch of the proof of this can be found in Ch. 2 of Boolos
[1979]. A detailed treatment for a system akin to P.A. can be found
in Hilbert-Bernays [1934-39] and a helpful discussion can be found
in Shoenfield [1967].

Until further notice, it will be assumed that P(v\) is a provability
predicate for S. Provability predicates enjoy the following three
properties (for any sentences X, Y and Z).

P4: If X D Y is provable in S, then so is P(X) D P(F).
P5: If X D (Y D Z) is provable in S, then so is

P6: If X D (P(X) D Y) is provable in <S, then so is

Proof.

P4: Suppose X D Y is provable (in S). Then so is P(X D F) (by
property PI). Then P(X) D P(Y) is provable (using property
Pa and modus ponens).

PS: Suppose X D (Y D Z) is provable. Then so is

(by P4). Also P(Y~D^) D (P(F) D_P(Z)) improvable (by
P4). Hence by prepositional logic, P(X) D (P(Y) D P(-Z)) is
provable.

P6: Suppose X D (P(X) D Y) is provable. Then

is provable (by P5). Also P(X) D P(P(X)) is provable. From
the last two facts, it follows, by prepositional logic, that

is provable in <S.
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Properties PI and PQ will play the key roles in that which follows.
We shall call S diagonalizable if every formula F(VI) has a fixed

point (with respect to S). Since P.A. is an extension of (#), then P.A.
is diagonalizable by the corollary of Theorem 4 of the last chapter.
We are now interested in provability predicates for diagonalizable
systems.

§2. The Unprovability of Consistency. We continue to
assume that P(i>i) is a provablity predicate for S.

Theorem 1. If G is a fixed point of the formula ~ -P(vi) and S is
consistent, then G is not provable in S.

Proof. We are given that G = ~ P(G) is provable in S. Now suppose
G were provable in S. Then ~ P(G) and P(G} would be provable
in S (by property P\). Hence S would be inconsistent. So if S is
consistent, then G is not provable in S.

Consistency Sentences. We let "/" stand for any logical false-
hood (such as any sentence of the form Xl\ ~ X)—or for that mat-
ter, any sentence refutable in S. [A common choice for / in the
system P.A. is the sentence (0 = 1) .] We let consis be the sentence

~ P(7)-
If P(VI) is a "correct" provability predicate for S (i.e., if P(t>i)

expresses the set P), then the sentence consis is true iff / is not
provable in S — in other words, iff S is consistent. So the sentence
consis is an arithmetic sentence which can be said to "express" the
consistency of S. The next two theorems, however, do not require
the assumption that P(t>i) is a correct provability predicate for S
but only that P(UI) is a provability predicate for 5.

The next theorem is a key lemma for the proof of Godel's Second
Incompleteness Theorem-

Theorem 2.IfG is a fixed point of the formula ~ P(VI), then the
sentence consis D G is provable in S.

Proof. We are given that the sentence G = ~ P(G) is provable in S.
Since / is a refutable sentence of S, then ~ P(G) = (P(G) D /) is
provable in S and, therefore, G = (P(G) D /) is provable in S, and
so G D (P(G) D /) is provable. Then by property Pe, the sentence
P(G) D P(/) is provable. Hence ~ P(J) D~ P(G) is provable, and
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since G =~ P(G) is provable, then ~ P(/) D G is provable. Thus,
consis D G is provable in S.

From Theorems 1 and 2 we have:

Theorem 3—An Abstract Form of Godel's Second The-
orem. Suppose S is diagonalizable. Then if S is consistent, then
the sentence consis is not provable in S.
Proof. Suppose <5 is diagonalizable. Then there is a sentence G such
that G = ~ P(G) is provable in S and by Theorem 2, the sentence
consis D G is provable in S. Now suppose consis were provable in
S. Then G would be provable in S and S would be inconsistent by
Theorem 1 (since G is a fixed point of ~ P(v\)}. Therefore, if S is
consistent, then the sentence consis is not provable in S.

Discussion. For the case when S is the system P.A. and P(VI) is
a Si-formula expressing the set P, the sentence consis is a true sen-
tence (assuming P.A. to be consistent), but it is not provable in P.A.
This result has been paraphrased, "If arithmetic is consistent, then
it cannot prove its own consistency." Unfortunately there has been
a good deal of popular nonsense written about this by writers who,
obviously, do not understand what the matter is all about. We have
seen such irresponsible statements as, "By Godel's second theorem,
we can never know whether or not arithmetic is consistent." Rub-
bish! To see how silly this is, suppose it had turned out that the
sentence consis were provable in P.A.—or, to be more realistic, sup-
pose we consider a system that can prove its own consistency. Would
that be any grounds for trusting the consistency of the system? Of
course not! If the system were inconsistent, then it could prove ev-
ery sentence—including the statement of its own consistency! To
trust the consistency of a system on the grounds that it can prove
its own consistency is as foolish as trusting a person's veracity on
the grounds that he claims that he never lies. No, the fact that P.A.,
if consistent, cannot prove its own consistency—this fact does not
constitute the slightest rational grounds for doubting the consistency
of P.A.

§3. Henkin Sentences and Lob's Theorem. Leon
Henkin [1952] raised the following famous questions about the sys-
tem P.A.: Since the system is diagonalizable, there is a fixed point
for the formula P(VI)—a sentence H such that H = P(H} is prov-
able in P.A. Godel's sentence G—a fixed point of ~ P(v\)—is true
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iff it is not provable in P.A.; Henkin's sentence H is true iff it is
provable in P.A. Thus, H is either true and provable in P.A. or false
and not provable in P.A. Is there any way to tell which? This prob-
lem was answered by Lob [1955] who showed that the provability of
P(H) D H (let alone that of P(H) = H) is enough to guarantee the
provability of H. Here is Lob's theorem (we continue to assume that
P(VI) is a provability predicate for >S).

Theorem 4—Lob's Theorem. Suppose S is diagonalizable and
P(VI) is a provability predicate for <S. Then for any sentence Y,
if the sentence P(Y) D Y is provable in S, then so is Y.

Proof. Assume hypothesis. Now suppose P(Y) D Y is provable
in S. Since S is diagonalizable, there is a fixed point X for the
formula P^) D Y—thus, X = (P(JT) D Y) is provable. Therefore,
X D (P(X) 3 Y) is provable. So by property P6, the sentence
P(X) D P(Y) is provable. Then, since the sentence P(Y) D Y is
assumed provable, the sentence P(X) D Y is provable. But X =
(P(X) D Y) is provable and since P(X) D Y is provable, so is X.
Therefore, P(X) is provable (by property PI), and since P(X) D Y
is provable, so is Y.

Georg Kreisel has pointed out that Godel's second theorem can
be obtained as an easy corollary of Lob's Theorem. Suppose consis
is provable in S. Consis is the sentence ~ -P(/)5 and so the sentence
P(f) D / is provable in S. Then by Lob's theorem, / is provable in
<S, which means that S is inconsistent!

It has also been observed by Saul Kripke that Lob's Theorem can
be obtained as a corollary of Godel's second theorem (applied to <S
and extensions of <S).2

In the last decade or so, the whole subject of provability predicates
for diagonalizable systems has been tied up with the study of modal
logic. The union has been most fruitful! An excellent account of
all this can be found in Boolos: The Unprovability of Consistency,
which we earnestly recommend to the reader as a perfect follow-up
to this chapter.

Exercise 1. In this and the following exercises, P(VI) is assumed to
be a provability predicate for S.

Show that if X D (P(X) D Y) is provable in <S, then

2cf. Ch. 16 of Boolos and Jeffrey for an interesting discussion of this point
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is provable in S.

Exercise_2. Show that if X = (P(X) D Y] is provable (in S), then
so is (P(F) D Y) D X.

Exercise 3. Show that Th. 2 is a special case of Ex. 2.

Exercise 4. Show that for any sentence Jf, the sentence

is provable in <S.

Exercise 5. Show that under the hypothesis of Theorem 2, the sen-
tence consis = G is provable in S.

Exercise 6. Show that if X = Y is provable in 5, then

is provable in S.

Exercise 7. Show that if S is diagonalizable, then the sentence con-
sis D ~ P(consis) is provable in S.

Exercise 8. Show that if S is consistent and diagonalizable, then
for no sentence X is it the case that ~ P(X) is provable in S.



Chapter X

Some General Remarks on Provability and

Truth

We have given three different incompleteness proofs of Peano Arith-
metic—the first used Tarski's truth-set, the second (Godel's original
proof) was based on the assumption of ^-consistency, and the third
(Rosser's proof) was based on the assumption of simple consistency.
The three proofs yield different generalizations—namely

1. Every axiomatizable subsystem of J\f is incomplete.
2. Every axiomatizable w-consistent system in which all true SQ-

sentences are provable is incomplete.
3. Every axiomatizable simply consistent extension of (R) is in-

complete.

The first of the three proofs is by far the simplest and we are
surprised that it has not appeared in more textbooks. Of course,
it can be criticized on the grounds that it is not formalizable in
arithmetic (since the truth set is not expressible in arithmetic), but
this should be taken with some reservations in light of Askanas'
theorem, which we will discuss a bit later.

Induction and the u;-Rule. It is not too surprising that Peano
Arithmetic is incomplete because the scheme of mathematical induc-
tion does not really express the full force of mathematical induction.
The true principle of mathematical induction is that for any set A of
natural numbers, if A contains 0 and A is closed under the successor
function (such a set A is sometimes called an inductive set), then
A contains all natural numbers. Now, there are non-denumerably
many sets of natural numbers but only denumerably many formulas
in the language LA and, hence, there are only denumerably many
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expressible sets of LA- Therefore, the formal axiom scheme of induc-
tion for P.A. guarantees only that for every expressible set A, if A is
inductive, then A contains all natural numbers.

To express the principle of mathematical induction fully, we need
second order arithmetic in which we take set and relational variables
and quantify over sets and relations of natural numbers. Then we
can wholly express true mathematical induction using just the one
formula

The reader might now wonder whether the system consisting of the
Peano Axioms couched in second-order logic is complete. The an-
swer is that it is not because although mathematical induction is
fully expressible in second-order arithmetic, the trouble is that the
underlying logic (second-order logic) is not axiomatizable—i.e., the
set of Godel numbers of the logically valid second-order formulas is
not Ei.1

Returning to first-order arithmetic, suppose we added to P.A.
the following inference rule (known as the w-rule; it is sometimes
called Tarski's rule and sometimes Carnap's rule): For any formula
F(VI), one may infer VviF(vi) from the infinitely many premises
F(0), F(I),.. .,F(n),.... Let us call this system P.A.+ Godel's sen-
tence G is provable in P.A.+ (since it is a universal sentence all of
whose instances are provable in P.A.). Indeed, it is not hard to see
that all true sentences are provable in P.A."1" and P.A.+ is complete.
Why not, then, use P.A.+ instead of P.A. as a working axiom sys-
tem? The answer is that there is no way it can be used by a finite
being like a human or a computer. Proofs in P.A.+ are (sometimes)
of transfinite length.

We could add to P.A. a weaker rule to the effect that for any
formula F(VI}, if it is provable in P.A. that every instance of F(VI)
is provable in P.A., then VviF(v\) may be inferred. In this system,
Godel's sentence G is indeed provable, but the system is axiomatiz-
able, hence another sentence G\ can be found which is not provable
in that system.

[To state this rule more accurately, one can associate with each
formula F(VI) a Sj-formula F*(VI) that expresses the set of all n
such that F(n) is provable in P.A. Then one can add the axiom
scheme VviF*(vi) D P(VviF(vi)).]

1 See Boolos and Jeffrey for a further discussion of this point.
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There is simply no way to get around the fact that j\f is not axiom-
atizable, hence every axiomatizable subsystem of jV is incomplete.

Some Remarks on Arithmetic Truth.

1. For each n, let Tn be the set of Godel numbers of all true sen-
tences of degree n or less. The set T (of Godel numbers of all
true sentences) is then the union of all the sets TO , T\,..., Tn, —
We know that the set T is not arithmetic, yet for each individual
number ra, the set Tn is arithmetic. [Hint: For each n, let Fn be
the set of Godel numbers of the false sentences of degree n or
less. It is easy to construct formulas TO(^I) and -FoC^i); which
express the sets TO and FQ respectively. Then, for each n, given
formulas Tn(v\) and Fn(v\) respectively expressing the sets Tn

and Fni it is not difficult to find formulas Tn+i(vi) and Fn+i(vi)
that respectively express the sets Tn+i and -Fn+i. Details can
be found in Chapter 19 of Boolos and Jeffrey.]

2. Let us add one predicate variable M of degree 1 to the language
of P.A. [Thus, the atomic formulas are those of LA together with
any formula Mt, where t is any term.] Let $(M) be any closed
formula with M as a free predicate variable (all individual vari-
ables Vi are bound). The sentence 3>(M) is neither true nor
false but becomes either true or false when "M" is interpreted
as the name of some set of natural numbers.
It is not difficult to construct a formula J ( M ) such that if "M"
is interpreted as being the name of the set T, then J(M) is
true, and under any other interpretation of "M", the sentence
J(M) is false. [A proof of this can be found in Ch. 19 of
Boolos and Jeffrey, but the reader should try it as an exer-
cise.] It follows from this that the set T, though not express-
ible in first-order arithmetic (Tarski's theorem), is expressible
in second-order arithmetic—expressed, in fact, by the formula
3M( J(M) A Mvi) (or alternatively by VAf (J(M) D Aftn)).

3. Askanas' Theorem. Suppose we now take any formula F in
one free variable v\ and for each variable vf, we replace ev-
ery occurrence of Mv\ in /(M) by F(VI); we then obtain an
arithmetic sentence—call it UJ(F)"—that expresses the propo-
sition that F(VI) expresses the set T. By Tarski's theorem, no
formula F(VI) expresses the set T. Hence for every formula
F(VI), the sentence J(F) is false, and the sentence ~ J(F) is
true. Askanas' theorem [1975] is that for every formula F, the
sentence ~ J(F] is not only true, but provable in Peano Arith-
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metic. Thus, in a sense, Tarski's theorem is formalizable in
first-order arithmetic even though T is not arithmetic. [Roughly
speaking, Askanas' Theorem bears much the same relation to
Tarski's theorem as Godel's second theorem bears to Godel's
first incompleteness theorem.]

It was indicated in an Exercise in Ch. Ill how to obtain an arith-
metic formula PS(UI) that expresses the set of Godel numbers of the
provable sentences of P.A. (or rather, this was done for P.E., but
the modifications for P.A. are obvious). Then by Askanas' theorem,
the sentence ~ J(PS) is provable in P.A. This sentence is true if!
the set of provable sentences of P.A. differs from the set of true sen-
tences. Hence, under the assumption that P.A. is correct, it follows
that some true sentence is not provable in P.A. This constitutes a
slight variant of the Godel-Tarski incompleteness proof, but has the
advantage of showing that ~ J(Pg) 'ls not only true, but actually
provable in P.A.

Exercise. [For readers with some familiarity with second-order logic]
Many relations which can be shown to be expressible in first-order
arithmetic can be far more easily shown to be expressible in second-
order arithmetic. For example, we went through much labor in show-
ing that the exponential relation xy = z is (first-order) expressible
from plus and times. [We needed the finite sequence lemma, or a
/^-function to do this.] In second-order arithmetic, it can be done
very easily in the following manner.

Consider second-order arithmetic in which we have variables for
functions (as well as for sets and relations). Let "/" be a functional
variable of two arguments and let E(f) be the sentence

1. Show that if / is interpreted as the exponential function xy,
then the sentence E(f) is true, but if / is interpreted as any
other function, the sentence is false.

2. Show that the second-order formula 3f(E(f) A /(vi,V2) = ^3)
expresses the relation xy — z. Show the same for the formula
V/CE(/)D/(TH,«2) = »3).



Chapter XI

Self-Referential Systems

This chapter is largely a review of the essential ideas behind the
proofs of Godel, Rosser and Lob—only presented in a more abstract
setting. We believe that it will tie up these ideas in a helpful and
instructive manner.

We shall first present these ideas in the form of logic puzzles (much
in the manner of Smtdlyan [1987]). Then we shall state the results
more generally in terms of abstract systems that we call provability
systems. These are closely related to certain axiom systems of modal
logic, which we briefly discuss at the end of the chapter.

/. Logicians Who Reason About Themselves

In the puzzles to which we now turn, belief will play the role of
provability. Instead of considering a mathematical system and the
sentences provable in it, we consider a logician (sometimes call a rea-
soner) and the propositions believed by the reasoner. Apart from
the heuristic value, these "epistemic" incompleteness theorems ap-
pear to be of some interest to those working in artificial intelligence.

§1. An Analogue of the Tarski-GSdel Theorem. We
shall pay a visit to the Island of Knights and Knaves, in which knights
make only true statements and knaves make only false ones. Each
inhabitant is either a knight or a knave. No inhabitant can claim
that he is not a knight (since a knight would never make such a false
claim and a knave would never make such a true claim).

A logician visits this island one day and meets a native. All we
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are told about the logician is that he is completely accurate in his
beliefs—he never believes anything false. The native then makes a
certain statement X. It then follows that the logician can never
believe that the native is a knight nor can he ever believe that the
native is a knave.

Problem 1. What statement X would accomplish this?

A Solution. One solution is that the native says, "You will never
believe that I'm a knight." If the native were a knave, then his
statement would be false, which would mean that the logician would
believe that the native is a knight, contrary to the assumption that
the logician never believes anything false. Therefore, the native must
be a knight. It, then, further follows that the native's statement was
true and, hence, the logician can never believe that the native is a
knight. Then, since the native really is a knight and the logician
believes only true statements, he also will never believe that the
native is a knave. And so the logician must remain forever undecided
as to whether the native is a knight or a knave.

Discussion and Terminology. The function of the Knight-Knave
island was to get an "easy" fixed-point (the native can use the in-
dexical term "I"). In all the problems that follow, there will be one
native and one logician. We shall let k be the proposition that the
native is a knight. Now, whenever the native asserts a proposition
p, the proposition k = p must be true (if the native is a knight, then
p must be true, and if p is true, then the native must be a knight).
For any proposition p, we let Bp be the proposition that the logician
will sooner or later believe p. Now, in the above problem, the native
has asserted ~ Bk (you will never believe that I'm a knight) and so
the proposition k = ~ Bk is true. Actually, for any proposition #, if
q = ~ Bq is true and the logician never believes false propositions,
then he can never believe q nor can he ever believe ~ q. Thus, q
must be true, but the logician can never believe q.

§2. Normal and Stable Reasoners of Type 1. In the
problem just considered, it was not necessary that the reasoner ac-
tually heard the statement made by the native. Indeed, even if the
reasoner—call him Robert—were thousands of miles from the island
and a native of the island said, "Robert will never believe that I'm
a knight," then Robert, if always accurate in his beliefs, can never
believe that the native is a knight nor can he ever believe that the
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native is a knave. In the problems that follow, it will be necessary to
assume that the reasoner is on the island and hears the statement
made by the native. Moreover, it is to be assumed that the reasoner
believes that knights make only true statements, knaves make only
false ones and that every inhabitant is either a knight or a knave.
And so when the native asserts a proposition p to the reasoner, the
reasoner will believe the proposition k = p when k is the proposition
that the native is a knight.

As a matter of fact, in all the problems that follow, it is no longer
necessary to assume that knights really make true statements and
that knaves make false ones; all that it is necessary to assume is
that the reasoner believes that this is the case. Indeed, the notion of
truth will no longer be relevant; all that matters is what the reasoner
believes. [We are getting away from the Tarski-Godel argument and
veering towards the Godel and Rosser arguments.] And so, to repeat
a vital point, when the native asserts a proposition p, the reasoner
will believe k = p.

Reasoners of Type 1. We shall say that the reasoner is of type 1
if he has a thorough knowledge of prepositional logic—i.e. the set of
all propositions that he ever believes contains all tautologies and is
closed under modus ponens (if he ever believes p and ever believes
p D <?, then he will believe q). Of course, the assumption that the
reasoner is of type 1 is highly idealized since there are infinitely many
tautologies, and so we must assume something like immortality on
the reasoner's part (but little things like that don't bother us in
mathematics).

We shall also credit the reasoner with another power (which,
though not necessary, will make some of our later arguments shorter
and more transparent)—namely that the reasoner can do natural
deduction—i.e., if by assuming p as a premiss, the reasoner can de-
rive q as a conclusion, then the reasoner will believe p D q. [By a
well-known result called the deduction theorem, this extra power will
not enlarge the class of the reasoner's beliefs.]

Normality and Stability. We shall call the reasoner normal if
whenever he believes a proposition p, he believes that he believes
p (thus if he believes p, then he believes Bp). We shall call him sta-
ble if the converse holds—i.e., if he believes Bp (if he believes that he
believes p), then he really does believe p. We will call the reasoner
unstable if he is not stable—i.e., if there is at least one proposition p
such that the reasoner believes that he believes p, but doesn't actu-
ally believe p. [We remark that if a reasoner is unstable, he believes
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at least one false proposition, and so an accurate reasoner is auto-
matically stable. But stability is a weaker condition than accuracy
and does not involve the notion of truth. As we will see a bit later,
instablity is closely related to ^-inconsistency.]

We shall call the reasoner inconsistent if he believes some propo-
sition p and also believes ~ p. For a reasoner of type 1, this is equiv-
alent to the condition that he believes every proposition (sooner or
later) since p D (~ p D q) is a tautology. Also, for any tautologi-
cally contradictory proposition /, a reasoner of type 1 is inconsistent
if and only if he ever believes / (since for every q, the proposition
/ D q is a tautology). We call the reasoner consistent if he is not
inconsistent.

We might remark that a stable reasoner is not necessarily con-
sistent (in fact, an inconsistent reasoner of type 1 is automatically
stable since he will believe everything!) Nor is a consistent reasoner
necessarily stable.

Now for the problem.

Problem 2. A normal reasoner of type 1 visits the Island of Knights
and Knaves and meets a native who tells him, "You will never believe
that I'm a knight."

Prove that if the reasoner is both consistent and stable, then he
must remain forever undecided as to whether the native is a knight
or a knave. More specifically prove

1. If the reasoner ever believes that the native is a knight, then he
will be inconsistent.

2. If the reasoner ever believes that the native is a knave, then
he will be either inconsistent or unstable. [Solution is given
following Problem 3.]

w-Consistent Reasoners. In the two problems above, it made no
difference in what order the reasoner believed various propositions.
In this problem and the next, the order will be relevant.

The reasoner arrives on the Island of Knights and Knaves on some
day which we call the 0th day and he believes various propositions
on various days after his arrival. For any proposition p and any
natural number n, we let Bnp be the proposition that the reasoner
believes p on the nth day (after his arrival). We continue to let
Bp be the proposition that the reasoner believes p on some day
or other. [Thus, Bp is the proposition 3nBnp.] We will call the
reasoner ^-inconsistent if there is at least one proposition p such
that the reasoner (sooner or later) believes Bp, yet for each natural
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number ra, he (sooner or later) believes ~ Bnp. For a reasoner of
type 1, if he is (simply) inconsistent, then he will sooner or later
believe every proposition and will also be w-inconsistent. Thus an
^-consistent reasoner of type 1 is also simply consistent.

For the present problem, we are given that the reasoner satisfies
the following three conditions (n is any natural number; p is any
proposition).

C\: If he believes p on the nth day (after his arrival), then he will
believe Bnp.

Ci\ If he fails to believe p on the nth day, then he will believe ~ Bnp.
63: If he ever believes Bnp, then he will believe Bp.

The idea behind C\ and C-z is that the reasoner has perfect mem-
ory for what propositions he has or has not believed on past days.
As to Cs, this tells us that the reasoner knows at least a tiny bit of
first-order logic (he can pass from believing Bnp, for a particular ra,
to believing 3nBnp).

Problem 2 A—After GSdel. A reasoner of type 1 satisfying con-
ditions C\, C*2 and Cs arrives on the island on the 0th day and meets
a native who tells him, "You will never believe that I am a knight."
Prove

1. If the reasoner ever believes that the native is a knight, he will
be inconsistent.

2. If the reasoner ever believes that the native is a knave, then he
will be w-inconsistent. [Solution is given following the solution
of Problem 2.]

§3. Rosser Type Reasoners. We continue to assume that
the reasoner believes various propositions on various days.

For any propositions p and q, we will say that the reasoner believes
p before he believes q—in symbols, Bp < Bq—if for some n, he
believes p on the ntfl day, but has not yet believed q. We shall
understand that if the reasoner ever believes p and never believes q,
then the reasoner does believe p before he believes q (because on the
first day that he believes p, he has not believed q on either that day
or any earlier day). We note that Bp < Bq and Bq < Bp cannot
both be true.

By a Rosser-type reasoner, we shall mean a reasoner of type 1 such
that for any propositions p and q, if he believes p before he believes
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q, then he will believe Bp < Bq and ~ (Bq < Bp}. [Again the idea
is that on any day, the reasoner has perfect memory for what he has
and has not believed on that day and all earlier days.]

Problem 3—After Rosser. A Rosser-type reasoner visits the Is-
land of Knights and Knaves and is told by a native, "You will never
believe I'm a knight before you believe I'm a knave." [Symbolically,
the native is asserting ~ (Bk < B~k).]

Prove that if the reasoner is simply consistent, then he must re-
main forever undecided as to whether the native is a knight or a
knave (if he should believe either one, he will be inconsistent).

Solution to Problem 2. Since the native has asserted ~ Bk, then
the reasoner believes k = ~ Bk.

1. Suppose he ever believes k. Then, since he believes k = ~ Bk
and is of type 1, he will believe ~ Bk. But since he believes
k and is normal, he will also believe Bk. Hence he will be
inconsistent.

2. Suppose he ever believes ~ k. Then he will believe Bk (since he
believes k = ~ Bk and, hence, ~ k = Bk, since he is of type 1).
If he is stable, then he will then believe k and, hence, he will
be inconsistent. And so he is either unstable or inconsistent.

Solution to Problem 2A. The reasoner believes k = ~ Bk.

1. Suppose he ever believes k. Then for some n, he believes k on
the nth day. Hence by C\, he will believe Bnk and by 63, he
will believe Bk. But since he believes both k and k = ~ Bk,
he will believe ~ Bk and thus be inconsistent.

2. Suppose he ever believes ~ k. Then he will believe Bk (since he
is of type 1 and believe k = ~ Bk). If he is simply consistent,
then he will never believe k, and so for each n, he fails to believe
k on the nth day. By Ci, for each n he will believe ~ Bnk.
Yet he believes Bk, and so he is w-inconsistent. Thus if he is
simply consistent, then he is ^-inconsistent, and if he is not
simply consistent, then he is certainly w-inconsistent. Thus he
is w-inconsistent.

Remark. Actually the solution is a corollary of the result of Prob-
lem 2, because conditions C\ and 63 jointly imply that the reasoner
is normal. Condition Ci implies that if the reasoner is ^-consistent,
then he must be stable. We leave the verification of these two facts
to the reader.
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Solution to Problem 3. For any proposition p, let Q(p) be the
proposition Bp < B ~ p. It follows from the definition of a Rosser-
type reasoner that if he ever believes p, then he will believe Q(p),
and if he ever believes ~ p, then he will believe ~ Q(p)- The reason
is this. Suppose he believes p. If he is inconsistent, then he will
believe everything, including Q(p). If he is consistent, then he will
never believe ~ p. Hence he will believe p before he believes ~ p and
he will believe Bp < J9~p, which is the proposition Q(p). Similarly,
if he ever believes ~ p, then he will believe ~ Q(p) (he will also
believe Q(~ p), but this won't help us in our solution).

Now, the native has asserted ~ Q(k}, and so the reasoner believes
k = ~ Q(k). If he ever believes A;, then he will then believe ~ Q(k)
and he will also believe Q(k) (as we showed above). Hence, he will
be inconsistent. If he ever believes ~ k, then he will believe Q(k)
and also ~ Q(k) (as shown above), and he will again be inconsistent.

§4. The Consistency Problem. In this problem and the
next, we no longer need to consider the order in which the reasoner
believes various propositions, but we will have to postulate some
"introspective" properties of the reasoner (which are the analogues
of a formula P(v\) being a provability predicate for a first-order
system 5).

By an advanced reasonei—or a reasoner of type 4 —we shall mean
a reasoner of type 1 who satisfies the following three conditions
(where p and q are any propositions).

PI: If he believes p, then he believes Bp (he is normal).
P2: He believes B(p D q) D (Bp D Bq).
P3: He believes Bp D BBp.

We will paraphrase P% by saying that the reasoner knows that his
beliefs are closed under modus ponens. [He believes, "If I should ever
believe p and believe that p implies q, then I will believe q.] We shall
paraphrase PS by saying that the reasoner knows that he is normal.
[For any proposition p, the reasoner believes, "If I ever believe p,
then I will believe that I believe p."] Of course, an advanced reasoner
believes BX for any tautalogy X (since he is of type 1 and normal).
And so, roughly speaking, an advanced reasoner is a normal reasoner
of type 1 who knows that he is a normal reasoner of type 1.

We shall say that a reasoner believes that he is consistent if for
every proposition p, he believes that he doesn't believe both p and



I. Logicians Who Reason About Themselves 123

~ p. For a reasoner of type 1, this is equivalent to his believing that
he will never believe / (where / can be any fixed tautologically false
proposition). Thus, a reasoner of type 1 believes that he is consistent
iff he believes ~ Bf.

We note that if an advanced reasoner believes p D q, then he will
believe Bp D Bq (because, being normal, he will believe

and, hence, by PZ and the use of modus ponens, he will believe
Bp D Bq). Therefore if he believes p = q, then he will believe both
Bp D Bq and Bq D Bp. Thus, if he visits the Island of Knights
and Knaves and if a native asserts a proposition q, then he will not
only believe k = q (as would any reasoner of type 1) but will also
believe Bp D Bq (as well as Bq D Bp). Thus he will believe, "If I
ever believe that the native is a knight, then I will believe what he
said" (and he will also believe the converse).

Problem 4—After Godel's Second Theorem. An advanced
reasoner visits the Island of Knights and Knaves and meets a native
who tells him, "You will never believe I'm a knight." Prove that
if the reasoner should believe that he is consistent, then he will be-
come inconsistent. Stated otherwise, if the reasoner is (and remains)
consistent, he can never know it.

Solution. We could give the solution in the formal manner of Chap-
ter IX, but we find it far more perspicuous to use the fact that the
reasoner can do natural deduction. It should be understood that
the reasoner is so "programmed" that any argument he can use, he
sooner or later will use.

And so, suppose the reasoner assumes his own consistency. Then
he will sooner or later get into an inconsistency by going through
the following argument: "Suppose I ever believe that the native is
a knight. Then I'll believe what he said—I'll believe that I don't
(and never will) believe he's a knight. But also, if I ever believe he's
a knight, then I'll believe that I do believe he's a knight (since I
am normal), which means I would be inconsistent! Now, since I am
consistent (sic!), then I can never believe that he's a knight. He said
I never would. Hence he's a knight."

At this point the reasoner believes that the native is a knight.
Being normal, he continues, "Now I believe he's a knight. He said I
never would. Hence he is a knave."

At this point the reasoner is clearly inconsistent.
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§5. Self-Fulfilling Beliefs and Lob's Theorem. We now
consider an advanced reasoner who is suffering from some ailment
and visits a doctor whose word he trusts. He asks the doctor, "Will
I ever be cured?" The doctor replies, "The cure is mainly psycho-
logical; the belief that you will be cured is self-fulfilling. If you ever
believe that you will be cured, then you will be."

The reasoner leaves the doctor none too satisfied. Although he
believes what the doctor has said, he cannot but ask himself, "But
how do I know that I will ever believe that I will be cured?" He
ponders this for awhile but gets nowhere, and so he decides to take
a vacation on the Island of Knights and Knaves. One day he meets
the Island Shaman. He knows that the shaman is either a knight
or a knave, but he doesn't know which. Nevertheless, in a moment
of desperation, he confides his case to the shaman and concludes by
saying, "My doctor is trustworthy, and so if I ever believe that I'll
get cured, then I will get cured. But I have no rational evidence that
I'll ever believe that I'll get cured!" The shaman replies, "If you ever
believe I'm a knight, then you will be cured."

The interesting thing is that it then follows that the reasoner will
believe that he will be cured (and if his doctor was right, he will be).

Problem 4—After Lob's Theorem. How is this proved?

Solution. The solution will be more perspicuous if we give it partly
in English and partly in symbolism. We let c be the proposition that
the reasoner will be cured. The reasoner goes to the island already
believing Be D c. Then the shaman tells him Bk D c, where k is the
proposition that the shaman is a knight, and so the reasoner believes
k = (BkD c).

The reasoner then reasons, "Suppose I ever believe that he's a
knight. Then I'll believe what he said—I'll believe Bk D c. But if
I believe he's a knight, I'll believe Bk (since I am normal). Once I
believe Bk and Bk D c, I'll believe c. But if I believe c, then I really
will be cured (as my doctor told me). Thus, if I ever believe that the
shaman is a knight, then I'll get cured. Well, that's exactly what he
said. Hence he's a knight!"

The reasoner, being normal, then continues, "Now I believe he's
a knight, and I've already proved that if I ever believe he's a knight,
I'll get cured. Hence I'll get cured."

At this point the reasoner believes that he will get cured (and if
his doctor was right, then he will be).
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Exercise 1. Suppose in Problem 1 the native had instead said, "You
will believe that I am a knave." Would the same conclusion follow?

Exercise 2. Same question with Problem 2.

Exercise 3. Suppose in Problem 3 the native had instead said, "You
will believe I'm a knave before you believe I'm a knight." [The native
asserts B~k < Bk]. Would the same conclusion follow?

Exercise 4. Suppose in Problem 4 the shaman had instead said, "If
you ever believe that I'm a knight, then you will believe that you will
get cured." Would that have helped the reasoner?

Exercise 5. Suppose, instead, the shaman had said, "You will be-
lieve that if I'm a knight, then you will be cured." Would that have
helped the reasoner?

Exercise 6. Suppose the shaman had said, "You will never be cured
and you will believe that I'm a knave." Would that have helped the
reasoner? [Yes it would, why?]

Exercise 7. Suppose the shaman had said, "You will never believe
I'm a knight and you will never believe that you will be cured."
Would that have helped the reasoner?

Exercise 8. Suppose the reasoner had never consulted a doctor
(and, hence, never had any prior belief that if he believes he will
be cured, then he will be). Suppose the shaman had made two
separate statements (1) "If you ever believe I'm a knight, then you
will believe that you'll be cured" and (2) "If you ever believe I'm a
knight, then you will be cured." Prove that the reasoner (of type 4)
will believe that he will be cured.

Exercise 9. Here is a cute one. An advanced reasoner goes to the
Island of Knights and Knaves and is told by a native, "You will
believe that there is life on other planets." Prove that what the
reasoner will believe is the following, "If he is a knight, then I'll
believe that he is one."

Exercise 10. A native says to an advanced reasoner, "You will be-
lieve that if I am a knight, then you will believe that I am one."
Prove that the reasoner will believe that the native is a knight.
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//. Incompleteness Arguments in a General Setting

The preceding problems are obvious analogues of incompleteness
theorems of earlier chapters. Actually, their solutions and the cor-
responding incompleteness theorems are special cases of the more
abstract theorems to which we now turn.

We let M. be a collection of the following items:

1. A set S whose elements we will call sentences or propositions
(depending on the intended application) [They could also be
elements of a Boolean Algebra.]

2. An element / of S called falsehood
3. A binary operation D that assigns to every ordered pair (X,Y)

of elements of S an element X D Y of S
4. A subset of S whose elements will be called the provable ele-

ments of A4
5. A mapping B that assigns to every element X of 5 an element

BX of 5 [Informally, BX means that X is a provable element.]

We shall call M an abstract provability system—or a provability
system, for short. In application to the problems of Part I, the
elements of S are propositions, and Bp is the proposition that the
reasoner sooner or later believes p.

In application to the systems S of earlier chapters with a provabil-
ity predicate P(VI), we associate with each such system S the fol-
lowing provability system M(S): The sentences of M(S) are those
of «S, the provable sentences of M(S) are the provable sentences of
<S, and for every sentence X we take BX to be the sentence P(X).

Returning to abstract provability systems, we define a subset V
of S to be a valuation set if / $• V and for any sentences X and Y,
the sentence X D Y is in V iff either X £ V or Y € V. We call X a
tautology if it belongs to every valuation set. A subset T of S will be
called a truth set if it is a valuation set and if for every sentence X,
the sentence BX is in T iff X is provable in M. We define ~ X to
be X D /, and then the logical connectives A , V and = are defined
in the usual manner.

We shall say that M. is of type. 1 if the set of provable elements
contains all tautologies and is closed under modus ponens (if X and
X D Y are both provable, then so is Y). We shall call M normal
if for every provable X, the sentence BX is also provable. We shall
call M stable if the converse holds (if BX is provable, then so is X).
We shall call M. consistent if / is not provable. We let consis be the
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sentence ~ Bf. A mapping Q from sentences to sentences will be
called a Rosser mapping if for every sentence X, if X is provable,
then so is QX, and if ~ X is provable, then so is ~ QX.

We shall say that M. is of type 4 if f°r anv sentences X and Y,
the following conditions hold:

PI: If X is provable, then so is BX (M is normal).
P2: B(X D Y) D (BX D BY) is provable in M.
P3: BX D BBX is provable in M.

Problems 1-5 of Part I, when stripped of their anthropomorphic
setting, reduce simply to Theorem 1-5 below (which also generalize
earlier theorems about first-order systems).

Theorem 1—After Tarski-Godel. Suppose there exists a truth-
set T for M. such that every provable element is in T, and suppose
X is an element such that X = ~ BX is in T. Then neither X nor
~ X is provable in M (yet X € T).

Theorem 2—After Godel. Suppose M is a normal system of
type 1 and G is a sentence such that G = ~ BG is provable in M..
Then

1. If G is provable in M, then M is inconsistent
2. // ~ G is provable in M, then M. is either inconsistent or

unstable.

Theorem 3—After Rosser. Suppose M is a system of type 1
and Q is a Rosser mapping for M. Then for any sentence X, if
X = ~ QX is provable in M. and M. is consistent, then neither X
nor ~ X is provable in M.

Theorem 4—After Godel's Second Theorem. Suppose M is of
type 4 and there is a sentence G such that G = ~ BG is provable in
M. Then, if M. is consistent, the sentence consis (i.e., the sentence
~ Bf) is not provable in M.

Theorem 5—After Lob. Suppose M is of type 4, BX D X is
provable in M, and there is a sentence Y such that Y = (BY D X)
is provable in M. Then X is provable in M..

These five theorems just about sum up the most important results
of earlier chapters. A few remarks, though, may be in order.

We first turn to a corollary of Theorem 2. Let us consider a prov-
ability system M. and, in addition, a mapping $ that assigns to
every sentence X and every natural number n a sentence <&(X, n).
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[Heuristically, we think of the provable sentences as being proved
at various stages, and <&(X,n) expresses the proposition that X is
proved at stage n.] Let us say that $ enumerates the set of provable
sentences or that <& is an enumeration map for M. if for every sen-
tence X, if X is provable, then 3>(^f, ri) is provable for at least one n.
If X is not provable, then ~ <&(X, n} is provable for every n. Let us
call $ an adequate enumeration map for M. if, in addition, for every
sentence X and every natural number n, if $(X, n) is provable, then
so is EX. Let us say that M is (^-consistent with respect to $ if
for every sentence X, if BX is provable, then there is at least one n
such that ~ $(X, n) is not provable. Then we have

Theorem 2A. Suppose Ai is of type 1 and $ is an adequate enu-
meration map for M.. Suppose G is a sentence such that

is provable in M.. Then

1. If M is consistent, then G is not provable in M..
2. If M. is u-consistent with respect to $, then ~ G is not provable

in M.

We remark that the adequacy of $ implies that M. is normal, and
the ^-consistency of M with respect to <I> implies that M. is stable.
So Theorem 2A is a corollary of Theorem 2.

We note that the solution of Problem 2A is a special case of The-
orem 2A, taking $(X, n) to be BnX (the reasoner believes X on the
nih day).

Let us also note that the solution of Exercise 5 of Chapter VIII is
a special case of Theorem 2A. We are given a formula F(x,y) that
enumerates in 5 the set of Godel numbers of the provable sentences.
We take $(X, n) to be the sentence F(X,n~) and apply Theorem 2A.

Theorem 3 generalizes the solution of Exercise 6 of Chapter VIII.
We take QX to be the sentence 3y(F(!e,y) 3 (\/z < y ) ~ G(x, z)).
Then ~ QX is logically equivalent to the sentence

As in Chapter IX, the proofs of Theorems 4 and 5 above are
facilitated by first showing that from properties P\,Pi and PS, it
follows that for any sentences X, Y and Z, the following conditions
hold:

P4: If X D Y is provable in M, then so is BX D BY.
P5: IfX D(Y D Z) is provable in M, then so is BX D (BY D BZ).
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Pe: If X D (BX D F) is provable in M, then so is BX D BY.

Properties PI and P& are the crucial ones for the proofs of The-
orems 4 and 5 (cf. Exercises 11 and 12 below). Let us note that
Kreisel's observation (page 103) still holds good in our present ab-
stract setting. Theorem 4 is that special case of Theorem 5 in which
X = f .

Exercise 11. Show that if M is of type 1 and has property P6, then
it has property PS.

Exercise 12. Call M. of type 4~ if it is of type 1 and has Prop-
erties PI and P6 (it will then also have property PS, by the above
exercise, but may fail to have Property P^). Show that Theorems 4
and 5 hold under the weaker assumption that M. is of type 4~.

///. Systems of Type G

We know by Lob's theorem for Peano Arithmetic that for any sen-
tence X of P.A., if P(X) D X is provable in P.A., then so is X. This
means that P(P(X) D X) 3 P(X) is a true sentence of arithmetic.
Well, it is not only true, but even provable in P.A., as we will see.

We define a provablity system M to be of type G if it is of type 4
and if for every sentence X, the sentence B(BX D X) D BX is
provable in M.

We will say that M is reflexive if for every sentence X, there is a
sentence Y such that Y = (BY D X) is provable in M [The system
P.A. is reflexive since it is diagonalizable]. Let us say that M. has
the Lob property if for every sentence X, if BX D X is provable in
M., then so is X. We now wish to prove

Theorem 6. For any system M of type 4, the following three con-
ditions are equivalent:

C\: A"l is reflexive.
C-2'. M has the Lob property.
Cz'- M is of type G

Of course, we already know that C\ implies C? (by Theorem 5).
To show that Ci implies Cs, we first prove a lemma. For any sentence
X, we let X* be the sentence B(BX D X) 3 BX.

Lemma. If M is of type 4, then BX* D X* is provable in M.
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Proof of Lemma. Suppose M is of type 4. For any sentence X we
have to show that

is provable in Ai . It suffices to show that

is provable. Let

We are to show that Y D BX is provable. Well, the following
sentences are all provable.

(1) Y D B(B(BX D X ) D £X) (obvious)
(2) Y D £(£X D X) (obvious)
(3) B(BXDX)DBB(BXDX) (by P3)
(4) Y D BB(BX D JT) (from (2) and (3))
(5) y D -B^JT (from (1), (4), using P2)
(6) B(BX D X) D (5BX D BX) (by P2)
(7) Y D (55JST D 5X) (by (2) and (6) and

prepositional logic)
(8) YDBX (by 5), (7) and

prepositional logic)

Proof of Theorem 6. Suppose M. is of type 4. We will show that
<?! D C2 D C3 D Ci.

(1) We already know that C\ D C2.
(2) Suppose C2 — i.e., that M has the Lob property. For any

sentence X, the sentence BX* D X* is provable in M. (by the above
lemma). Then, since M. has the Lob property, X* is provable in
M—- i.e. B(BX D X) D BX is provable in M. Thus X is of
type G.

(3) Suppose 63 — i.e. that M is of type G.
Now, X D (J5^C D -X") is a tautology; hence it is provable. Then

by Property P4, BX D B(BX D X) is provable. Also

is provable (by hypothesis) and so BX = B(BX D Jf) is provable.
Then (by prepositional logic)

is provable. Thus Y = (BY D X) is provable, where Y is the
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sentence BX D X. Thus M. is reflexive.

Remarks. 1. We passed from 63 to C-z via C\. A simpler proof
that €3 implies C? is this: Suppose M is of type G. Suppose also
BX D X is provable in M. Then so is B(BX D X). But

is provable, and so BX is provable. Since BX D X is provable, so
is X.

2. We passed from C\ to 63 via C^- It might be instructive to
look at a direct proof.

Suppose there is some Y such that Y = (BY D X) is provable.
Then the following sentences are provable.

(1) Y D (BY D X)
(2) (fly D x) D y
(3) BY D #X (from (1), using Property P6)
(4) (#Z D X) D (BY D X) (from (3) by prepositional logic)
(5) (BX D X) D Y (from (4) and (2))
(6) B(BX D X) D BY (from (5), using property P4)
(7) B(BX D X)D BX (from (6) and (3))

[One can also prove the stronger fact that for M of type 4, for
any sentences X and Y, the sentence

is provable in .M1]

Exercise 13. Consider a provability system M. and a mapping
<{>(x,y) from ordered pairs of sentences to sentences. Let us say
that <f>(x,y) has the fixed-point property (for M, understood) if for
every sentence F, there is a sentence X such that the sentence
X = <p(X,Y) is provable in M.. Now consider the following map-
pings, (fi-(f>6:

Jcf. Boolos [1979] or Smullyan [1987].
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To say that X is reflexive is to say that (p\ has the fixed-point
property. Now, suppose M. is of type 4.

(a) Show that if M. is reflexive, then every one of the mappings
ip\-<pG has the fixed point property.

(b) Show that if any one of the mappings (f\-<f& has the fixed-point
property, then M. is reflexive (and hence of type (7).

Exercise 14. How does (b) of Exercise 13 solve Exercises 4-7?

IV. Modal Systems

Let us now say just a little as to how all this is related to systems of
modal logic.

Modal logic was originally developed for the purpose of explicating
the notion of necessary truth (as opposed to merely contingent or
factual truth), and the symbol D was used to mean "it is necessary
that". We are interested, however, in the more recent "provabil-
ity" interpretation of modal logic in which D is interpreted as "it is
provable that".

The alphabet of modal logic (in the formalism that we shall fol-
low) consists of a denumerable set of symbols called propositional
variables together with the following five symbols:

The symbol J_ (pronounced "eet"—it is a T written upside down)
is thought of as denoting logical falsehood (it's synonymous with
"/", as we have used it following Church [1956]).

The class of modal formulas is defined inductively by the following
rules.

(1) _L is a modal formula, and so is each propositional variable.
(2) For any modal formulas X and Y, the expression (X D Y) is a

modal formula.
(3) For any modal formula X, the expression D X is a modal for-

mula.

One defines ~ X as X D J-, and the other logical connectives A, V
and = are then defined as usual.

There are three modal axiom systems of increasing strength—
K, K4 and G—which are of particular interest for the study of prov-
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ability predicates (or more generally, of abstract provability sys-
tems). The basic system K has as its axioms

A\: All tautologies
A2: All formulas of the form 

The system K4 has the above axioms plus

A3: All formulas of the form 

The system G has the above axioms plus

A4: All formulas of the form 

The inference rules for these systems are Modus Ponens (from X
and X D Y to infer Y) and Necessitation (from X to infer D X}.

We have associated with each first-order system S of arithmetic
an abstract provability system M(S} and we can do the same with
systems of modal logic. Given an arbitrary axiom system M whose
formulas are those of modal logic, we define ./Vf(M) as that prov-
ability system whose sentences are the formulas of modal logic and
whose provable sentences are the formulas provable in M, and whose
mapping B is that which assigns to each modal formula X the for-
mula D X . Then it is obvious that M (K4) is a system of type 4 and
M(G) is a system of type G. Any theorems about all systems of
type 4 apply in particular to the modal system K4 — and, similarly,
with systems of type G and the modal system G.

Going in the other direction, any theorem about K4 gives us infor-
mation about all systems M. of type 4 — and similarly with G and all
systems M of type G. More explicitly, for any abstract provability
system M., we define a translation (of modal formulas) into M. as a
mapping (f> that assigns to every modal formula X a sentence <f>(X)
such that:

i. ¥>(-L) = /;
2. V(X D y) = ¥>(*) D y>(y);
3. if <p(X) = y then <^(D X) = BY.

An obvious induction argument shows that any mapping (pQ of all
prepositional variables to sentences of Ai can be extended to one
and only one translation <p (of all modal formulas) into M. By a
translate of a modal formula X into M, we mean any sentence <p(X)
where <f is any translation into M- Then it is easy to see that if
M is of type 4, then for any modal formula X, if X is provable in
K±, then all its translates are provable in M. Similarly with the
modal system G and systems M of type G. In particular, if X is
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provable in Gf, then all its translates into P.A. are provable in P.A.
A remarkable result of Robert Solovay (known as his completeness
theorem for G) states the converse—i.e., if all translates of X into
P.A. are provable in P.A., then X is provable in G. Proofs of this
can be found, e.g., in Boolos [1979], in which the whole theory of
the modal system G (a big subject these days) is developed in great
depth.2

In Smullyan [1987], we introduced the notion of self-referential
interpretations of modal systems. By a modal sentence, we mean a
modal formula in which no propositional variables appear. [These
are called letterless sentences in Boolos [1979].] Thus all (letterless)
sentences are built from the three symbols D, D and _L and the two
parentheses. We now define a modal sentence X to be true for a
modal system M if it is true when we interpret D to mean provability
in M. More precisely, we define true for M by the inductive rules:

1. J. is not true for M;
2. X D Y is true for M iff either X is not true for M or Y is true

forM;
3. D X is true for M iff X is provable in M.

We then call a modal system M self-referentially correct if every
sentence provable in M is true for M. It is not difficult to prove
that the systems K, K± and G are each self-referentially correct (a
proof can be found in Smullyan [1987]). Since G is self-referentially
correct, it immediately follows that G is consistent—and also that
G is stable (since the provability in G o f D D X D D X implies its
truth for G, which means that if D X is provable in G, then so is
X. And the same argument goes for K^). Under the self-referential
interpretation of (7, the sentence ~ D _L expresses the consistency
of G (it is true for G iff G is consistent). Since G is consistent, the
sentence ~ D _L is, indeed, true for G but not provable in G (since G
itself is a system of type G). This system G is, thus, a very simple
example of a consistent system that cannot prove its own consistency.

Exercise 15. Prove that there is no formula X such that ~ UX is
provable in G,

2 Before turning to this volume, the reader might first consult Chapter 27 of Boolos
and Jeffrey [1980]. Also, those readers who are interested in the project of regarding
"belief as a modality (as we did in Part I of this chapter) might take a look at our
volume [1987], or [1986], in which an informal presentation is combined with a formal
one.
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Exercise 16. Let us say that a provability system M. can prove its
own stability if for every sentence X of .M, the sentence BBX D BX
is provable in M.

Show that if At is a consistent stable system of type G, then M.
cannot prove its own stability. [In particular, not all formulas of the
form D D X D D X are provable in the modal system G.]
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